An efficient numerical method for pricing option under jump diffusion model

被引:0
作者
Mohan K. Kadalbajoo
Alpesh Kumar
Lok Pati Tripathi
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
关键词
Radial basis function; Finite difference; Option pricing; Jump-diffusion models; Partial integro-differential equation;
D O I
10.1007/s12572-015-0136-z
中图分类号
学科分类号
摘要
The aim of the present manuscript is to develop an efficient and accurate numerical method for pricing the option when underlying asset follows jump diffusion process. The governing equation is time semi discretized by using the implicit–explicit Crank-Nicolson Leap-Frog scheme followed by radial basis function based finite difference method. Numerical results are presented to show the efficiency of the methods for put and call option under Merton and Kou model. The stability of time semi discretized scheme is also proved.
引用
收藏
页码:114 / 123
页数:9
相关论文
共 45 条
[1]  
Merton RC(1976)Option pricing when underlying stock returns are discontinuous J. Financ. Econ. 3 125-144
[2]  
Kou SG(2002)A jump-diffusion model for option pricing Manag. Sci. 48 1086-1101
[3]  
Almendral A(2005)Numerical valuation of options with jumps in the underlying Appl. Numer. Math. 53 1-18
[4]  
Oosterlee CW(2000)Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing Rev. Deriv. Res. 4 231-262
[5]  
Andersen L(2008)Pricing options under jump diffusion processes with fitted finite volume method Appl. Math. Comput. 201 398-413
[6]  
Andreasen J(2013)Contour integral method for european options with jumps Commun. Nonlinear Sci. Numer. Simul. 18 478-492
[7]  
Zhang K(2014)Robust spectral method for numerical valuation of european options under merton’s jump-diffusion model Numer. Methods Partial Differ. Equ. 30 1169-1188
[8]  
Wang S(2005)Robust numerical methods for contingent claims under jump diffusion processes IMA J. Numer. Anal. 25 87-112
[9]  
Ngounda E(2012)A new radial basis functions method for pricing american options under merton’s jump-diffusion model Int. J. Comput. Math. 89 1164-1185
[10]  
Patidar KC(2014)Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme Rev. Deriv. Res. 17 161-189