Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces

被引:0
|
作者
Jin Zhang
Chenxi Guo
Susu Fang
Xiaotong Zhao
Le Li
Haoyang Jiang
Zhaoyang Liu
Ziqi Fan
Weigao Xu
Jianping Xiao
Miao Zhong
机构
[1] Nanjing University,College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures
[2] Dalian Institute of Chemical Physics,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy
[3] Chinese Academy of Sciences,Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering
[4] Nanjing University,undefined
[5] University of Chinese Academy of Sciences,undefined
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electrochemical CO2 reduction (CO2R) to ethylene and ethanol enables the long-term storage of renewable electricity in valuable multi-carbon (C2+) chemicals. However, carbon–carbon (C–C) coupling, the rate-determining step in CO2R to C2+ conversion, has low efficiency and poor stability, especially in acid conditions. Here we find that, through alloying strategies, neighbouring binary sites enable asymmetric CO binding energies to promote CO2-to-C2+ electroreduction beyond the scaling-relation-determined activity limits on single-metal surfaces. We fabricate experimentally a series of Zn incorporated Cu catalysts that show increased asymmetric CO* binding and surface CO* coverage for fast C–C coupling and the consequent hydrogenation under electrochemical reduction conditions. Further optimization of the reaction environment at nanointerfaces suppresses hydrogen evolution and improves CO2 utilization under acidic conditions. We achieve, as a result, a high 31 ± 2% single-pass CO2-to-C2+ yield in a mild-acid pH 4 electrolyte with >80% single-pass CO2 utilization efficiency. In a single CO2R flow cell electrolyzer, we realize a combined performance of 91 ± 2% C2+ Faradaic efficiency with notable 73 ± 2% ethylene Faradaic efficiency, 31 ± 2% full-cell C2+ energy efficiency, and 24 ± 1% single-pass CO2 conversion at a commercially relevant current density of 150 mA cm−2 over 150 h.
引用
收藏
相关论文
共 50 条
  • [41] Acidic Electroreduction of CO2 to Multi-Carbon Products with CO2 Recovery and Recycling from Carbonate
    Perazio, Alessandro
    Creissen, Charles E.
    de la Cruz, Joseï Guillermo Rivera
    Schreiber, Moritz W.
    Fontecave, Marc
    ACS ENERGY LETTERS, 2023, 8 (07) : 2979 - 2985
  • [42] Combining experimental and theoretical insights for reduction of CO2 to multi-carbon compounds
    Ian Brewis
    Rana-Faisal Shahzad
    Robert W. Field
    Abdesslem Jedidi
    Shahid Rasul
    Discover Chemical Engineering, 2 (1):
  • [43] Enhance the activity of multi-carbon products for Cu via P doping towards CO reduction
    Xiangdong Kong
    Cheng Wang
    Han Zheng
    Zhigang Geng
    Jun Bao
    Jie Zeng
    Science China(Chemistry) , 2021, (07) : 1096 - 1102
  • [44] Engineering tandem catalysts and reactors for promoting electrocatalytic CO2 reduction reaction toward multi-carbon products
    Zhu, Shaojun
    Lu, Tianrui
    Lv, Jing-Jing
    Li, Jun
    Wang, Jichang
    Wang, Xin
    Jin, Huile
    Wang, Zheng-Jun
    Wang, Shun
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 39
  • [45] Highly Active Oxygen Coordinated Configuration of Fe Single-Atom Catalyst toward Electrochemical Reduction of CO2 into Multi-Carbon Products
    Lakshmanan, Keseven
    Huang, Wei-Hsiang
    Chala, Soressa Abera
    Taklu, Bereket Woldegbreal
    Moges, Endalkachew Asefa
    Lee, Jyh-Fu
    Huang, Pei-Yu
    Lee, Yao-Chang
    Tsai, Meng-Che
    Su, Wei-Nien
    Hwang, Bing Joe
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (24)
  • [46] Mechanistic insights into high-throughput screening of tandem catalysts for CO2 reduction to multi-carbon products
    Liu, Yingnan
    Wang, Dashuai
    Yang, Bin
    Li, Zhongjian
    Zhang, Tao
    Rodriguez, Raul D.
    Lei, Lecheng
    Hou, Yang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (30) : 20399 - 20408
  • [47] Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts
    Zheng, Yao
    Vasileff, Anthony
    Zhou, Xianlong
    Jiao, Yan
    Jaroniec, Mietek
    Qiao, Shi-Zhang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (19) : 7646 - 7659
  • [48] Enhanced CO Affinity on Cu Facilitates CO2 Electroreduction toward Multi-Carbon Products
    Li, Xiaotong
    Qin, Minkai
    Wu, Xiuju
    Lv, Xiangzhou
    Wang, Jianghao
    Wang, Yong
    Wu, Hao Bin
    SMALL, 2023, 19 (39)
  • [49] Constraining CO2 Coverage on Copper Promotes CO2 Electroreduction to Multi-carbon Products in Strong Acid
    Yang, Wanfeng
    Zhao, Yong
    Chen, Yiqing
    Ren, Hangjuan
    Sun, Jiameng
    Shi, Zhangsheng
    Jin, Xindie
    Zhang, Zhonghua
    Wang, Xin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (12)
  • [50] Creating interfaces of Cu0/Cu+ in oxide-derived copper catalysts for electrochemical CO2 reduction to multi-carbon products
    Qu, Yafei
    Zheng, Wei
    Wang, Peichen
    Huang, Hao
    Huang, Minxue
    Hu, Lin
    Wang, Hui
    Chen, Qianwang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 645 : 735 - 742