Tomographic Image Reconstruction in the Case of Limited Number of X-Ray Projections Using Sinogram Inpainting

被引:0
作者
A. Allag
A. Benammar
R. Drai
T. Boutkedjirt
机构
[1] Research Center in Industrial Technologies (CRTI),
[2] University of Sciences and Technology Houari Boumédiène,undefined
来源
Russian Journal of Nondestructive Testing | 2019年 / 55卷
关键词
X-ray tomographic; image reconstruction; limited projections; inpainting sinogram; total variation regularization; proximal methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:542 / 548
页数:6
相关论文
共 28 条
[1]  
Brooks R.A.(1978)A new approach to interpolation in computed tomography J. Comput. Assisted Tomogr. 2 577-585
[2]  
Weiss G.H.(2009)Directional view interpolation for compensation of sparse angular sampling in cone-beam CT IEEE Trans. Med. Imaging 28 1011-1022
[3]  
Talbert A.J.(2008)Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform Measurement Science and Technology 19 094015-1605
[4]  
Bertram M.(2007)Extension of the reconstruction field of view and truncation correction using sinogram decomposition Med. Phys. 34 1593-2117
[5]  
Wiegert J.(2005)Artifact reduction in truncated CT using sinogram completion Proc. SPIE 5747 2110-441
[6]  
Schafer D.(2014)Sinogram interpolation method for sparse-angle tomography Appl. Math. 5 423-5882
[7]  
Aach T.(2016)Fast reconstruction of low dose proton CT by sonogram interpolation Phys. Med. Biol. 61 5868-145
[8]  
Rose G.(2011)A first-order primal-dual algorithm for convex problems with applications to imaging J. Math. Imag. Vis. 40 120-2240
[9]  
Constantino E P A(1971)Three dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of Fourier transform Proc. Natl. Acad. Sci. 68 2236-268
[10]  
Ozanyan K B(1992)Nonlinear total variation based noise removal algorithms Physica D 60 259-undefined