Design optimization and parameter estimation of a PEMFC using nature-inspired algorithms

被引:0
作者
Luis Blanco-Cocom
Salvador Botello-Rionda
L. C. Ordoñez
S. Ivvan Valdez
机构
[1] Centro de Investigación en Matemáticas,Unidad de Energía Renovable
[2] A.C.,undefined
[3] Centro de Investigación Científica de Yucatán,undefined
[4] CONACYT-Centro de Investigación en Ciencias de Información Geoespacial,undefined
[5] CENTROGEO,undefined
[6] A.C.,undefined
来源
Soft Computing | 2023年 / 27卷
关键词
PEM fuel cell; Macrohomogeneous mathematical model; Bioinspired optimization algorithms; Performance maximization; Minimization of platinum mass loading;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical simulation of proton-exchange membrane fuel cells (PEMFCs) requires an adequate model and precise parameters for reproducing their operational performance quantified by the polarization curve. Bioinspired algorithms are well-suited for optimization. The simulator is stressed by inputting thousands of randomly generated parameters, and hence, a robust numerical model is required. Once the proper model and parameters reproduce the experimental data, they can be used for design improvement. This article proposes a reformulation of a macrohomogeneous mathematical model to provide higher numerical stability to the solutions. We introduce optimization problems for parameter estimation and design optimization by applying three bioinspired algorithms to maximize its performance and minimize the platinum mass loading mPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{{Pt}}$$\end{document}. The results are validated by comparing the experimental polarization curves with those simulated from the estimated parameters. We compare a base design’s performance with the optimized design for maximum performance. We also compare a base design with the optimized design for minimum mPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{{Pt}}$$\end{document}. The results show that the particle swarm optimization requires the lowest computational cost and performs the best in most cases, fitting the experimental data with errors lesser than 10-17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-17}$$\end{document}. The minimization of mPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\mathrm{{Pt}}$$\end{document} reduces the amount by 42% compared to the base case.
引用
收藏
页码:3765 / 3784
页数:19
相关论文
共 180 条
  • [1] Askarzadeh A(2011)Optimization of PEMFC model parameters with a modified particle swarm optimization Int J Energy Res 35 1258-1265
  • [2] Rezazadeh A(2011)Artificial immune system-based parameter extraction of proton exchange membrane fuel cell Int J Electr Power Energy Syst 33 933-938
  • [3] Askarzadeh A(2011)A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell Int J Hydrogen Energy 36 5047-5053
  • [4] Rezazadeh A(2014)A backtracking search algorithm combined with burger’s chaotic map for parameter estimation of PEMFC electrochemical model Int J Hydrogen Energy 39 11165-11174
  • [5] Askarzadeh A(2021)Pem fuel cell model parameters extraction based on moth-flame optimization Chem Eng Sci 229 1589-452
  • [6] Rezazadeh A(2003)A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell J Electrochem Soc 150 440-237
  • [7] Askarzadeh A(2003)Three-dimensional computational analysis of transport phenomena in a PEM fuel cell a parametric study J Power Sources 124 218-237
  • [8] dos Santos Coelho L(2021)Robust parameter estimation of a PEMFC via optimization based on probabilistic model building Math Comput Simul 185 218-21
  • [9] Ben Messaoud R(2021)Robust parameter estimation of a PEMFC via optimization based on probabilistic model building Math Comput Simul 185 13-3087
  • [10] Midouni A(2022)A reaction–convection–diffusion model for PEM fuel cells Finite Elem Anal Des 201 3075-376