共 5 条
H-fields and their Liouville extensions
被引:0
作者:
Matthias Aschenbrenner
Lou van den Dries
机构:
[1] University of Illinois at Urbana-Champaign,
[2] Department of Mathematics,undefined
[3] 1409 West Green Street,undefined
[4] Urbana,undefined
[5] IL 61801,undefined
[6] U.S.A. (e-mail: {maschenb,undefined
[7] vddries}@math.uiuc.edu)}
,undefined
来源:
Mathematische Zeitschrift
|
2002年
/
242卷
关键词:
Model Theory;
Differential Field;
Hardy Field;
Liouville Extension;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce H-fields as ordered differential fields of a certain kind. Hardy fields extending \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\mathbb R}$\end{document}, as well as the field of logarithmic-exponential series over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\mathbb R}$\end{document} are H-fields. We study Liouville extensions in the category of H-fields, as a step towards a model theory of H-fields. The main result is that an H-field has at most two Liouville closures.
引用
收藏
页码:543 / 588
页数:45
相关论文