H-fields and their Liouville extensions

被引:0
作者
Matthias Aschenbrenner
Lou van den Dries
机构
[1] University of Illinois at Urbana-Champaign,
[2] Department of Mathematics,undefined
[3] 1409 West Green Street,undefined
[4] Urbana,undefined
[5] IL 61801,undefined
[6] U.S.A. (e-mail: {maschenb,undefined
[7] vddries}@math.uiuc.edu)} ,undefined
来源
Mathematische Zeitschrift | 2002年 / 242卷
关键词
Model Theory; Differential Field; Hardy Field; Liouville Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce H-fields as ordered differential fields of a certain kind. Hardy fields extending \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb R}$\end{document}, as well as the field of logarithmic-exponential series over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathbb R}$\end{document} are H-fields. We study Liouville extensions in the category of H-fields, as a step towards a model theory of H-fields. The main result is that an H-field has at most two Liouville closures.
引用
收藏
页码:543 / 588
页数:45
相关论文
共 5 条