Variational approach to Arnold diffusion

被引:0
作者
Chong-Qing Cheng
Jinxin Xue
机构
[1] Nanjing Univerisity,Department of Mathematics
[2] Tsinghua University,Yau Mathematical Sciences Center
来源
Science China Mathematics | 2019年 / 62卷
关键词
Arnold diffusion; Aubry set; normal hyperbolicity; normal form; variational methods; genericity; 37J40; 37J50; 49L25;
D O I
暂无
中图分类号
学科分类号
摘要
Arnold diffusion was conjectured by Arnol’d (1964) as a typical phenomena of topological instability in classical mechanics. In this paper, we give a panorama of the researches on Arnold diffusion using the variational approaches.
引用
收藏
页码:2103 / 2130
页数:27
相关论文
共 42 条
  • [1] Arnol’d V I(1963)Small denominators and problems of stability of motion in classical and celestial mechanics Russian Math Surveys 18 85-192
  • [2] Arnol’d V I(1964)Instability of dynamical systems with several degrees of freedom (Instability of motions of dynamic system with five-dimensional phase space) Soviet Math 5 581-585
  • [3] Bernard P(2007)Symplectic aspects of Mather theory Duke Math J 136 401-420
  • [4] Bernard P(2008)The dynamics of pseudographs in convex Hamiltonian systems J Amer Math Soc 21 615-669
  • [5] Bernard P(2008)A generic property of families of Lagrangian systems Ann of Math (2) 167 1099-1108
  • [6] Contreras G(2017)Arnold diffusion in arbitrary degrees of freedom and crumpled 3-dimensional normally hyperbolic invariant cylinders Acta Math 217 1-79
  • [7] Bernard P(2017)Uniform hyperbolicity of invariant cylinder J Differential Geom 106 1-43
  • [8] Kaloshin V(2017)Dynamics around the double resonance Cambridge J Math 5 153-228
  • [9] Zhang K(2018)Order property and Modulus of Continuity of Weak KAM Solutions Calc Var Partial Differential Equations 57 65-517
  • [10] Cheng C-Q(2004)Existence of diffusion orbits in a priori unstable Hamiltonian systems J Differential Geom 67 457-277