Synthesis of Nickel Nanopowders under Dynamic Conditions

被引:0
作者
Alymov M.I. [1 ]
Rubtsov N.M. [1 ]
Seplyarskii B.S. [1 ]
Zelenskii V.A. [1 ,2 ]
Ankudinov A.B. [2 ]
机构
[1] Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast
[2] Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow
来源
Alymov, M.I. (alymov@ism.ac.ru) | 2018年 / Pleiades journals卷 / 13期
关键词
D O I
10.1134/S1995078018060022
中图分类号
学科分类号
摘要
Abstract: In this paper, the synthesis of nickel nanopowders by the chemicometallurgical method under dynamic conditions, when the composition of the gas medium is changed in the process of synthesis (argon is changed for hydrogen or otherwise) with the retention of the overall time of synthesis, is studied for the first time. It is demonstrated that the synthesis under dynamic conditions is an efficient method for controlling the morphology and sizes of synthesized nanopowders. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:557 / 560
页数:3
相关论文
共 14 条
[1]  
Shishido T., Takehira K., Preparation of highly dispersed ni catalysts for H<sub>2</sub> production for polymer electrolyte fuel cells, J. Jpn. Pet. Inst., 58, pp. 353-364, (2015)
[2]  
Qiu S., Zhang X., Liu Q., Wang T., Zhang Q., Ma L., A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation, Catal. Commun., 42, pp. 73-78, (2013)
[3]  
Ning X., Lu Y., Fu H., Wan H., Xu Z., Zheng S., Template-mediated Ni(II) dispersion in mesoporous SiO<sub>2</sub> for preparation of highly dispersed Ni catalysts: influence of template type, ACS Appl. Mater. Interfaces, 9, pp. 19335-19344, (2017)
[4]  
Park K.H., Im S.H., Park O.O., The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials, Nanotechnology, 22, (2011)
[5]  
Zhang Y., Wen J., Wang J., Pan D., Shen M., Lu Y., Synthesis of monodisperse Ce<sub>x</sub>ZR<sub>1 – x</sub>O<sub>2</sub> nanocrystals and the size-dependent enhancement of their properties, Nano Res., 4, pp. 494-504, (2011)
[6]  
Kundu P., Nethravathi C., Deshpande P.A., Rajamathi M., Madras G., Ravishankar N., Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: synergistic co-reduction mechanism and high catalytic activity, Chem. Mater., 23, pp. 2772-2780, (2011)
[7]  
Rubio-Garcia J., Coppel Y., Lecante P., Mingotaud C., Chaudret B., Fabienne G., Kahn M.L., One-step synthesis of metallic and metal oxide nanoparticles using amino-PEG oligomers as multi-purpose ligands: size and shape control, and quasi-universal solvent dispersibility, Chem. Commun., 47, pp. 988-990, (2011)
[8]  
Malik M.A., Wani M.Y., Hashim M.A., Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update, Arab. J. Chem., 5, pp. 397-417, (2012)
[9]  
Ganguli A.K., Ganguly A., Vaidya S., Microemulsion-based synthesis of nanocrystalline materials, Chem. Soc. Rev., 39, pp. 474-485, (2010)
[10]  
Puntes V.F., Krishnan K.M., Alivisatos A.P., Colloidal nanocrystal shape and size control: the case of cobalt, Science (Washington, D.C., U. S.), 291, pp. 2115-2117, (2001)