Nonperturbative universal Chern-Simons theory

被引:0
作者
R.L. Mkrtchyan
机构
[1] Yerevan Physics Institute,
来源
Journal of High Energy Physics | / 2013卷
关键词
Chern-Simons Theories; Topological Field Theories; Topological Strings;
D O I
暂无
中图分类号
学科分类号
摘要
Closed simple integral representation through Vogel’s universal parameters is found both for perturbative and nonperturbative (which is inverse invariant group volume) parts of free energy of Chern-Simons theory on S3. This proves the universality of that partition function. For classical groups it manifestly satisfy N → −N duality, in apparent contradiction with previously used ones. For SU(N ) we show that asymptotic of nonperturbative part of our partition function coincides with that of Barnes G-function, recover Chern-Simons/topological string duality in genus expansion and resolve abovementioned contradiction. We discuss few possible directions of development of these results: derivation of representation of free energy through Gopakumar-Vafa invariants, possible appearance of non-perturbative additional terms, 1/N expansion for exceptional groups, duality between string coupling constant and Kähler parameters, etc.
引用
收藏
相关论文
共 36 条
[1]  
’t Hooft G(1974)A planar diagram theory for strong interactions Nucl. Phys. B 72 461-undefined
[2]  
Mkrtchyan RL(1981)The equivalence of Sp(2N ) and SO(−2N ) gauge theories Phys. Lett. B 105 174-undefined
[3]  
Mkrtchyan RL(2012)Universality in Chern-Simons theory JHEP 08 153-undefined
[4]  
Veselov AP(2011)Algebraic structures on modules of diagrams J. Pure Appl. Algebra 215 1292-undefined
[5]  
Vogel P(1996)La série exceptionnelle des groupes de Lie C.R. Acad. Sci. Paris Série I 322 321-undefined
[6]  
Deligne P(1996)La série exceptionnelle des groupes de Lie II C.R. Acad. Sci. Paris Série I 323 577-undefined
[7]  
Deligne P(2006)A universal dimension formula for complex simple Lie algebras Adv. Math. 201 379-undefined
[8]  
de Man R(2002)Triality, exceptional Lie algebras and Deligne dimension formulas Adv. Math. 171 59-undefined
[9]  
Landsberg JM(2004)Series of Lie groups Michigan Math. J. 52 453-undefined
[10]  
Manivel L(2012)Casimir eigenvalues for universal Lie algebra J. Math. Phys. 53 102106-undefined