The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n = {M-1 \choose \left\lfloor(M-2)/2\right\rfloor}$$\end{document} has covering radius \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{n}{2} - 1$$\end{document} if M − 1 is a power of 2, otherwise \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\lfloor\frac{n}{2}\right\rfloor$$\end{document} . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.
机构:
Bulgarian Academy of Sciences, Inst. of Mathematics and Informatics, Veliko Tarnovo 5000Bulgarian Academy of Sciences, Inst. of Mathematics and Informatics, Veliko Tarnovo 5000