The covering radius of extreme binary 2-surjective codes

被引:0
|
作者
Gerzson Kéri
机构
[1] Hungarian Academy of Sciences,Computer and Automation Research Institute
来源
Designs, Codes and Cryptography | 2008年 / 46卷
关键词
Covering radius; Divisibility of binomial coefficients; Factorization; Minimum distance; Surjective code; Uniform hypergraph; 94B75; 05C65; 05C70; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = {M-1 \choose \left\lfloor(M-2)/2\right\rfloor}$$\end{document} has covering radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2} - 1$$\end{document} if M − 1 is a power of 2, otherwise \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor\frac{n}{2}\right\rfloor$$\end{document} . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.
引用
收藏
页码:191 / 198
页数:7
相关论文
共 50 条
  • [31] On covering radius of codes over Z2p
    Annamalai, N.
    Durairajan, C.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (02)
  • [32] THE COVERING RADIUS OF HADAMARD CODES IN ODD GRAPHS
    SOLE, P
    GHAFOOR, A
    SHEIKH, SA
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 501 - 510
  • [33] A random construction for permutation codes and the covering radius
    Peter Keevash
    Cheng Yeaw Ku
    Designs, Codes and Cryptography, 2006, 41 : 79 - 86
  • [34] A random construction for permutation codes and the covering radius
    Keevash, Peter
    Ku, Cheng Yeaw
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 41 (01) : 79 - 86
  • [35] Asymptotic minimum covering radius of block codes
    Chen, PN
    Han, YSS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (04) : 549 - 564
  • [36] Further results on the covering radius of small codes
    Keri, Gerzson
    Ostergard, Patric R. J.
    DISCRETE MATHEMATICS, 2007, 307 (01) : 69 - 77
  • [37] New Results on Codes with Covering Radius 1 and Minimum Distance 2
    Patric R. J. Östergård
    Jörn Quistorff
    Alfred Wassermann
    Designs, Codes and Cryptography, 2005, 35 : 241 - 250
  • [38] Binary List Decoding Beyond Covering Radius
    Bardellotto, Erika
    Fabris, Francesco
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2014, 35 (5-6): : 561 - 570
  • [39] On the covering radius of Z4-codes and their lattices
    Aoki, T
    Gaborit, P
    Harada, M
    Ozeki, M
    Solé, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2162 - 2168
  • [40] On generalized Hamming weights and the covering radius of linear codes
    Janwa, H.
    Lal, A. K.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 347 - +