The covering radius of extreme binary 2-surjective codes

被引:0
|
作者
Gerzson Kéri
机构
[1] Hungarian Academy of Sciences,Computer and Automation Research Institute
来源
Designs, Codes and Cryptography | 2008年 / 46卷
关键词
Covering radius; Divisibility of binomial coefficients; Factorization; Minimum distance; Surjective code; Uniform hypergraph; 94B75; 05C65; 05C70; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The covering radius of binary 2-surjective codes of maximum length is studied in the paper. It is shown that any binary 2-surjective code of M codewords and of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = {M-1 \choose \left\lfloor(M-2)/2\right\rfloor}$$\end{document} has covering radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2} - 1$$\end{document} if M − 1 is a power of 2, otherwise \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor\frac{n}{2}\right\rfloor$$\end{document} . Two different combinatorial proofs of this assertion were found by the author. The first proof, which is written in the paper, is based on an existence theorem for k-uniform hypergraphs where the degrees of its vertices are limited by a given upper bound. The second proof, which is omitted for the sake of conciseness, is based on Baranyai’s theorem on l-factorization of a complete k-uniform hypergraph.
引用
收藏
页码:191 / 198
页数:7
相关论文
共 50 条
  • [21] Linear codes with covering radius 3
    Davydov, Alexander A.
    Ostergard, Patric R. J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 253 - 271
  • [22] ON THE COVERING RADIUS OF SOME MODULAR CODES
    Gupta, Manish K.
    Durairajan, Chinnappillai
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (02) : 129 - 137
  • [23] A note on covering radius of MacDonald codes
    Bhandari, MC
    Durairajan, C
    ITCC 2003: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2003, : 221 - 225
  • [24] More on the covering radius of BCH codes
    LevyditVehel, F
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (03) : 1023 - 1028
  • [25] Linear codes with covering radius 3
    Alexander A. Davydov
    Patric R. J. Östergård
    Designs, Codes and Cryptography, 2010, 54 : 253 - 271
  • [26] New Linear Codes with Covering Radius 2 and Odd Basis
    Alexander A. Davydov
    Patric R. J. Osterga
    Designs, Codes and Cryptography, 1999, 16 : 29 - 39
  • [27] Improved lower bounds on the domination number of hypercubes and binary codes with covering radius one
    Wu, Ying-Sian
    Chen, Jun-Yo
    DISCRETE MATHEMATICS, 2024, 347 (02)
  • [28] New linear codes with covering radius 2 and odd basis
    Davydov, AA
    Östergård, PRJ
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (01) : 29 - 39
  • [29] On codes over Zp2 and its covering radius
    Annamalai, N.
    Durairajan, C.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)
  • [30] Constructions and families of nonbinary linear codes with covering radius 2
    Davydov, AA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1679 - 1686