On logarithmic Sobolev inequality for the noncommutative two torus

被引:0
作者
Masoud Khalkhali
Sajad Sadeghi
机构
[1] University of Western Ontario,Department of Mathematics
来源
Journal of Pseudo-Differential Operators and Applications | 2017年 / 8卷
关键词
Logarithmic Sobolev inequality; Noncommutative torus; Hypercontractivity;
D O I
暂无
中图分类号
学科分类号
摘要
An analogue of Gross’ logarithmic Sobolev inequality for a class of elements of noncommutative two tori is proved.
引用
收藏
页码:453 / 484
页数:31
相关论文
共 50 条
  • [31] Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality
    Artstein-Avidan, S.
    Klartag, B.
    Schuett, C.
    Werner, E.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 4181 - 4204
  • [32] The logarithmic Sobolev inequality for a submanifold in manifolds with asymptotically nonnegative sectional curvature
    Yuxin Dong
    Hezi Lin
    Lingen Lu
    Acta Mathematica Scientia, 2024, 44 : 189 - 194
  • [33] Logarithmic Sobolev Inequality and Exponential Convergence of a Markovian Semigroup in the Zygmund Space
    Shigekawa, Ichiro
    ENTROPY, 2018, 20 (04):
  • [34] The logarithmic Sobolev inequality for a submanifold in manifolds with asymptotically nonnegative sectional curvature
    Dong, Yuxin
    Lin, Hezi
    Lu, Lingen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 189 - 194
  • [35] Logarithmic Sobolev inequality and strong ergodicity for birth-death processes
    Jian Wang
    Frontiers of Mathematics in China, 2009, 4 : 721 - 726
  • [36] On a class of hamilton-jacobi equations and related logarithmic sobolev inequality
    Avantaggiati, Antonio
    Loreti, Paola
    Pocci, Cristina
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2011, 2 (02):
  • [37] Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems
    Landim, C
    Panizo, G
    Yau, HT
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (05): : 739 - 777
  • [38] Logarithmic Sobolev inequality and strong ergodicity for birth-death processes
    Wang, Jian
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 721 - 726
  • [39] Fisher Information and Logarithmic Sobolev Inequality for Matrix-Valued Functions
    Gao, Li
    Junge, Marius
    LaRacuente, Nicholas
    ANNALES HENRI POINCARE, 2020, 21 (11): : 3409 - 3478
  • [40] Matrix-valued modified logarithmic Sobolev inequality for sub-Laplacian on SU (2)
    Gao, Li
    Gordina, Maria
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)