Thermal Conductivity for a Noisy Disordered Harmonic Chain

被引:0
作者
Cédric Bernardin
机构
[1] Université de Lyon and CNRS,
[2] UMPA,undefined
[3] UMR-CNRS 5669,undefined
[4] ENS-Lyon,undefined
来源
Journal of Statistical Physics | 2008年 / 133卷
关键词
Thermal conductivity; Green-Kubo formula; Non-equilibrium systems; Disordered systems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a d-dimensional disordered harmonic chain (DHC) perturbed by an energy conservative noise. We obtain uniform in the volume upper and lower bounds for the thermal conductivity defined through the Green-Kubo formula. These bounds indicate a positive finite conductivity. We prove also that the infinite volume homogenized Green-Kubo formula converges.
引用
收藏
页码:417 / 433
页数:16
相关论文
共 36 条
  • [1] Aoki K.(2006)Energy transport in weakly anharmonic chains J. Stat. Phys. 124 1105-1129
  • [2] Lukkarinen J.(2006)Momentum conserving model with anomalous thermal conductivity in low dimensional systems Phys. Rev. Lett. 96 204303-714
  • [3] Spohn H.(2007)Anomalous transport and relaxation in classical one-dimensional models Eur. Phys. J. Spec. Top. 151 85-513
  • [4] Basile G.(2006)Homogenization of Ornstein-Uhlenbeck process in random environment Commun. Math. Phys. 266 699-289
  • [5] Bernardin C.(2007)Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise Stoch. Process. Appl. 117 487-813
  • [6] Olla S.(2005)Fourier’s law for a microscopic heat conduction model J. Stat. Phys. 121 271-626
  • [7] Basile G.(2004)Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs J. Stat. Phys. 116 783-36
  • [8] Delfini L.(2007)Towards a derivation of Fourier’s law for coupled anharmonic oscillators Commun. Math. Phys. 274 555-80
  • [9] Lepri S.(1971)Heat flow in regular and disordered harmonic chains J. Math. Phys. 12 1701-356
  • [10] Livi R.(1997)Motion by mean curvature from the Ginzburg-Landau Commun. Math. Phys. 185 1-1078