The irreducible characters of the alternating Hecke algebras

被引:0
作者
Andrew Mathas
Leah Neves
机构
[1] University of Sydney,School of Mathematics and Statistics
来源
Journal of Algebraic Combinatorics | 2018年 / 47卷
关键词
Iwahori–Hecke algebras; Alternating groups; Characters;
D O I
暂无
中图分类号
学科分类号
摘要
This paper computes the irreducible characters of the alternating Hecke algebras, which are deformations of the group algebras of the alternating groups. More precisely, we compute the values of the irreducible characters of the semisimple alternating Hecke algebras on a set of elements indexed by minimal length conjugacy class representatives and we show that these character values determine the irreducible characters completely. As an application, we determine a splitting field for the alternating Hecke algebras in the semisimple case.
引用
收藏
页码:175 / 211
页数:36
相关论文
共 14 条
[1]  
Geck M(1993)On the irreducible characters of Hecke algebras Adv. Math. 102 79-94
[2]  
Pfeiffer G(1992)A rational-function identity related to the Murnaghan–Nakayama formula for the characters of J. Algebr. Comb. 1 235-255
[3]  
Greene C(2014)Minimal length elements of extended affine Weyl groups Compos. Math. 150 1903-1927
[4]  
He X(1996)On Young’s orthogonal form and the characters of the alternating group J. Algebr. Comb. 5 127-134
[5]  
Nie S(2016)Seminormal forms and cyclotomic quiver Hecke algebras of type A Math. Ann. 364 1189-1254
[6]  
Headley P(1964)On the structure of a Hecke ring of a Chevalley group over a finite field J. Fac. Sci. Univ. Tokyo Sect. 10 215-236
[7]  
Hu J(1979)Representations of Coxeter groups and Hecke algebras Invent. Math. 53 165-184
[8]  
Mathas A(2001)The J. Algebra 240 535-558
[9]  
Iwahori N(2003)-analogue of the alternating group and its representations J. Algebra 264 231-250
[10]  
Kazhdan D(1991)-graded Clifford system in the Hecke algebra of type Invent. Math. 106 461-488