Students’ Understanding of the Derivative Concept in the Context of Mathematics for Economics; [Untersuchungen zum Verständnis der Ableitung in der Mathematik für Wirtschaftswissenschaftler]

被引:0
作者
Feudel F. [1 ]
Biehler R. [2 ]
机构
[1] Humboldt-Universität zu Berlin, Berlin
[2] Universität Paderborn, Paderborn
关键词
Conceptual understanding; Derivative; Mathematics for economics students; University mathematics education;
D O I
10.1007/s13138-020-00174-z
中图分类号
学科分类号
摘要
The derivative concept plays a major role in economics. However, its use in economics is very heterogeneous, sometimes inconsistent, and contradicts students’ prior knowledge from school. This applies in particular to the common economic interpretation of the derivative as the amount of change while increasing the production by one unit. Hence, in calculus courses for economics students, learners should acquire an understanding of the derivative that is mathematically acceptable and connected to their prior knowledge, but which also takes into account its practical use in economics. In this paper we first develop a theoretical model describing such an understanding of the derivative for economics students. We then present an exploratory study investigating the extent to which economics students have such an understanding after their calculus course. The results indicate that many of them might not have acquired this kind of understanding, in particular concerning the common economic interpretation of the derivative. The study furthermore yields possible gaps in students’ understanding and possible misconceptions. © 2020, The Author(s).
引用
收藏
页码:273 / 305
页数:32
相关论文
共 47 条
[11]  
Greefrath G., Oldenburg R., Siller H.-S., Ulm V., Weigand H.-G., Aspects and “Grundvorstellungen” of the Concepts of Derivative and Integral, Journal für Mathematik-Didaktik, 37, 1, pp. 99-129, (2016)
[12]  
Hahkioniemi M., Associative and reflective connections between the limit of the difference quotient and limiting process, The Journal of Mathematical Behavior, 25, 2, pp. 170-184, (2006)
[13]  
Hahn S., Prediger S., Bestand und Änderung – Ein Beitrag zur Didaktischen Rekonstruktion der Analysis, Journal für Mathematik-Didaktik, 29, 3-4, pp. 163-198, (2008)
[14]  
vom Hofe R., Grundvorstellungen mathematischer Inhalte als didaktisches Modell, Journal für Mathematik-Didaktik, 13, 4, pp. 345-364, (1992)
[15]  
vom Hofe R., Grundvorstellungen mathematischer Inhalte, (1995)
[16]  
vom Hofe R., Probleme mit dem Grenzwert – Genetische Begriffsbildung und geistige Hindernisse, Journal für Mathematik-Didaktik, 19, 4, pp. 257-291, (1998)
[17]  
Vom Hofe R., Blum W., “Grundvorstellungen” as a Category of Subject-Matter Didactics, Journal für Mathematik-Didaktik, 37, 1, pp. 225-254, (2016)
[18]  
Hoffkamp A., The use of interactive visualizations to foster the understanding of concepts of calculus: design principles and empirical results, ZDM, 43, 3, pp. 359-372, (2011)
[19]  
Kirsch A., Ein Vorschlag zur visuellen Vermittlung einer Grundvorstellung vom Ableitungsbegriff, Der Mathematikunterricht, 25, 3, pp. 25-41, (1979)
[20]  
Konigsberger K., Analysis 1, (2004)