On the existence of T-periodic solutions for Duffing type integro-differential equations with p-Laplacian

被引:0
作者
B. Ahmad
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
关键词
Periodic solutions; Duffing type integro-differential equations; p-Laplacian; Manasevich-Mawhin continuation theorem; 34B15; 34C25; 45J05;
D O I
10.1134/S1995080208010010
中图分类号
学科分类号
摘要
Sufficient conditions for the existence and uniqueness of T-periodic solutions of Duffing type integro-differential equation with p-Laplacian are presented. The main tool of study is Manasevich-Mawhin continuation theorem.
引用
收藏
页码:1 / 4
页数:3
相关论文
共 10 条
  • [1] Gupt G. P.(1997)A Sharper Condition for the Solvability of a Three Point Second Order Boundary Value Problem J. Math. Anal. Appl. 205 586-undefined
  • [2] Manasevich R.(1998)Periodic Solutions for Nonlinear Systems with J. Diff. Equations 145 367-undefined
  • [3] Mawhin J.(2001)-Laplacian-like Operators Abstract Appl. Anal. 6 191-undefined
  • [4] Garcia-Huidorbo M.(2004)Solvability for Nonlinear Three-Point Boundary Value Problem with Nonlinear Anal. 58 477-undefined
  • [5] Gupta C. P.(2007)-Laplacian-Like Operators at Resonance Appl. Math. Lett. 20 43-undefined
  • [6] Manasevich R.(undefined)An Extension of Mawhin’s Continuation Theorem and Its Application to Boundary Value Problems with a undefined undefined undefined-undefined
  • [7] Ge W.(undefined)-Laplacian undefined undefined undefined-undefined
  • [8] Ren J.(undefined)Periodic Solutions for Rayleigh Type undefined undefined undefined-undefined
  • [9] Zong M.(undefined)-Laplacian Equation with Deviating Arguments undefined undefined undefined-undefined
  • [10] Liang H.(undefined)undefined undefined undefined undefined-undefined