Investigation of the scale dependence in the MSR and MS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\textrm{MS}} $$\end{document} top quark mass schemes for the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document} invariant mass differential cross section using LHC data

被引:0
作者
Toni Mäkelä
André H. Hoang
Katerina Lipka
Sven-Olaf Moch
机构
[1] Deutsches Elektronen-Synchrotron,Faculty of Physics
[2] National Centre for Nuclear Research,Erwin Schrödinger Institute for Mathematics and Physics
[3] University of Vienna,Fakultät für Mathematik und Naturwissenschaften
[4] University of Vienna,II. Institut für Theoretische Physik
[5] Bergische Universität Wuppertal,undefined
[6] Universität Hamburg,undefined
关键词
Quark Masses; Top Quark;
D O I
10.1007/JHEP09(2023)037
中图分类号
学科分类号
摘要
The computation of the single-differential top quark-antiquark pair (tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document}) production cross section at NLO in the fixed-order expansion is examined consistently using the MSR and MS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\textrm{MS}} $$\end{document} short-distance top quark mass schemes. A thorough investigation of the dependence of different regions of the tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document} invariant mass spectrum on the renormalization scales R and μm of the MSR mass mtMSR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m}_{\textrm{t}}^{\textrm{MSR}} $$\end{document}(R) and MS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\textrm{MS}} $$\end{document} mass m¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{m} $$\end{document}t(μm), respectively, is carried out. We demonstrate that a scale choice of R ~ 80 GeV is important for the stability of the cross-section predictions for the low tt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{t}\overline{\textrm{t}} $$\end{document} invariant mass range, which is important for a reliable extraction of the top quark mass. Furthermore, a choice of semi-dynamical renormalization and factorization scales is preferred. These findings are expected to remain valid once non-relativistic quasi-bound state effects are included in the low invariant mass region.
引用
收藏
相关论文
共 55 条
  • [1] Bezrukov F(2012)undefined JHEP 10 140-undefined
  • [2] Kalmykov MY(2012)undefined JHEP 08 098-undefined
  • [3] Kniehl BA(2012)undefined Phys. Lett. B 716 214-undefined
  • [4] Shaposhnikov M(2020)undefined Ann. Rev. Nucl. Part. Sci. 70 225-undefined
  • [5] Degrassi G(2014)undefined Eur. Phys. J. C 74 3167-undefined
  • [6] Alekhin S(2019)undefined JHEP 07 100-undefined
  • [7] Djouadi A(2008)undefined Phys. Lett. B 666 71-undefined
  • [8] Moch S(2009)undefined Eur. Phys. J. C 60 375-undefined
  • [9] Hoang AH(2020)undefined JHEP 06 158-undefined
  • [10] Dowling M(2017)undefined JHEP 01 081-undefined