The stability of a non-homogeneous queueing system with regenerative input

被引:0
|
作者
E. Morozov
机构
[1] Petrozavodsk State University,Department of Applied Mathematics and Cybernetics
关键词
Regeneration Cycle; Cycle Length; Asymptotic Property; Basic Process; Renewal Process;
D O I
10.1007/BF02400926
中图分类号
学科分类号
摘要
A queueing system with nonidentical service channels, a regenerative input, and a renewal service process at each channel is considered. The ergodic conditions are found when the basic process describing the system (and including the queue-size and the waiting time vector) is regenerative with finite expectation of the regeneration cycle length. The asymptotic properties of the embedded renewal process of the regeneration points are used. The zero-delayed and delayed cases are considered separately. Some queueing network applications are discussed.
引用
收藏
页码:407 / 421
页数:14
相关论文
共 50 条
  • [1] Multiserver Queueing System with Non-homogeneous Customers and Sectorized Memory Space
    Ziolkowski, Marcin
    Tikhonenko, Oleg
    COMPUTER NETWORKS, CN 2018, 2018, 860 : 272 - 285
  • [2] On some time non-homogeneous queueing systems with catastrophes
    Giorno, V.
    Nobile, A. G.
    Spina, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 220 - 234
  • [3] Stability Conditions for Retrial Queueing Systems with Regenerative Input Flow
    Afanaseva L.G.
    Journal of Mathematical Sciences, 2021, 254 (4) : 446 - 455
  • [4] Stability of Multichannel Queueing Systems with Interruptions and Regenerative Input Flow
    Afanaseva, Larisa G.
    Tkachenko, Andrey
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (04) : 723 - 744
  • [5] Queueing Models of Systems with Non-Homogeneous Customers and their Applications in Computer Science
    Tikhonenko, Oleg
    Ziolkowski, Marcin
    2019 IEEE 15TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATICS (INFORMATICS 2019), 2019, : 427 - 432
  • [6] Queueing Systems with Non-homogeneous Customers and Infinite Sectorized Memory Space
    Tikhonenko, Oleg
    Ziolkowski, Marcin
    COMPUTER NETWORKS, CN 2019, 2019, 1039 : 316 - 329
  • [7] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    Cavalcanti, M. M.
    Correa, W. J.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Zanchetta, J. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [8] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    M. M. Cavalcanti
    W. J. Corrêa
    V. N. Domingos Cavalcanti
    M. A. Jorge Silva
    J. P. Zanchetta
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [9] Exponential stability of a non-homogeneous rotating disk-beam-mass system
    Chen, Xin
    Chentouf, Boumediene
    Wang, Jun-Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1243 - 1261
  • [10] DEA models for non-homogeneous DMUs with different input configurations
    Li, WangHong
    Liang, Liang
    Cook, Wade D.
    Zhu, Joe
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 254 (03) : 946 - 956