Relativistic satellite orbits: central body with higher zonal harmonics

被引:0
|
作者
Maximilian Schanner
Michael Soffel
机构
[1] Dresden Technical University,Theoretical Physics
[2] Dresden Technical University,Lohrmann
来源
Celestial Mechanics and Dynamical Astronomy | 2018年 / 130卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein’s theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273–3307, 1991; 45:1017–1044, 1992; 47:3124–3135, 1993; 49:618–635, 1994). Since effects of order (GM/c2R)×Jk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathrm{GM}/c^2R) \times J_k$$\end{document} with k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} for the Earth are very small (of order 7×10-10×Jk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 7 \times 10^{-10}\,\times \,J_k$$\end{document}) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit Jk/c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_k/c^2$$\end{document}-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian Jk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_k$$\end{document}-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These ‘mixed terms’ are treated by means of second-order perturbation theory based on the Lie-series method (Hori–Deprit method). Here we concentrate on the secular drifts of the ascending node <Ω˙>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<\!{\dot{\Omega }}\!>$$\end{document} and argument of the pericenter <ω˙>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<\!{\dot{\omega }}\!>$$\end{document}. Finally orders of magnitude are given and discussed.
引用
收藏
相关论文
共 50 条
  • [31] DETERMINATION OF NON-ZONAL HARMONICS OF GEOPOTENTIAL FROM SATELLITE DOPPLER DATA
    GUIER, WH
    NATURE, 1963, 200 (490) : 124 - &
  • [32] Relativistic precession of periodic orbits in central force fields
    Omara, MA
    PHILOSOPHICAL MAGAZINE, 1932, 13 (85): : 722 - 732
  • [33] Higher harmonics generation in relativistic electron beam with virtual cathode
    Kurkin, S. A.
    Badarin, A. A.
    Koronovskii, A. A.
    Hramov, A. E.
    PHYSICS OF PLASMAS, 2014, 21 (09)
  • [34] GENERATION OF HIGHER HARMONICS IN RELATIVISTIC ELECTRON BEAM WITH VIRTUAL CATHODE
    Kurkin, Semen A.
    Badarin, Artem A.
    Koronovskii, Alexey A.
    Hramov, Alexander E.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [35] ABOUT THE INFLUENCE OF SECOND ZONAL HARMONIC ON THE MOTION OF SATELLITE IN ALMOST CIRCULAR ORBITS
    Pirozhenko, A., V
    Maslova, A., I
    Vasilyev, V. V.
    SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2019, 25 (02): : 3 - 11
  • [36] Higher-order geodesic deviations and the calculus of relativistic orbits
    Colistete, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (20): : 2756 - 2756
  • [37] INFLUENCE OF HIGH-ORDER ZONAL HARMONICS ON MOTION OF ARTIFICIAL SATELLITE WITHOUT DRAG
    GIACAGLIA, GEO
    ASTRONOMICAL JOURNAL, 1964, 69 (04): : 303 - &
  • [38] ZONAL GRAVITY HARMONICS FROM LONG SATELLITE ARCS BY A SEMI-NUMERIC METHOD
    WAGNER, CA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 209 - 209
  • [39] Robe's circular restricted three-body problem with zonal harmonics
    Singh, Jagadish
    Omale, Achonu Joseph
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 353 (01) : 89 - 96
  • [40] Robe’s circular restricted three-body problem with zonal harmonics
    Jagadish Singh
    Achonu Joseph Omale
    Astrophysics and Space Science, 2014, 353 : 89 - 96