Why Does Maximum Tc Occur at the Crossover From Weak to Strong Electron–phonon Coupling in High-temperature Superconductors?

被引:0
作者
Dragan Mihailovic
机构
[1] Jozef Stefan Institute,
来源
Journal of Superconductivity and Novel Magnetism | 2022年 / 35卷
关键词
Critical temperature; High-temperature superconductivity; Polarons; Two-component superconductivity;
D O I
暂无
中图分类号
学科分类号
摘要
In cuprate superconductors, a pronounced maximum of superconducting Tcmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}^{max}$$\end{document} is observed in compounds that have an in-plane Cu–O distance aCu-O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{Cu-O}$$\end{document} close to ∼1.92\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.92$$\end{document} angstroms. On the other hand, direct measurements of the electron–phonon coupling λ⟨ω2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \langle {\omega }^{2}\rangle$$\end{document} as a function of aCu-O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a}_{Cu-O}$$\end{document} show a clear linear correlation, implying that Tcmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}^{max}$$\end{document} is a strongly non-linear function of λ⟨ω2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \langle {\omega }^{2}\rangle$$\end{document}. Conventional superconductivity theories based on the electron–phonon interaction predict a monotonic dependence of Tcmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}^{max}$$\end{document} on λ⟨ω2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \langle {\omega }^{2}\rangle$$\end{document}, which makes them incompatible with the observed behavior. The observed crossover behavior as a function of λ⟨ω2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \langle {\omega }^{2}\rangle$$\end{document} suggests that Tcmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}^{max}$$\end{document} occurs at the crossover from weak to strong coupling, which is also associated with the onset of carrier localization. A coexistence, with a dynamical exchange of localized and itinerant carriers in a two-component superconductivity scenario are in agreement with the observed anomalous behavior and are suggested to be the key to understanding the mechanism for achieving high Tcmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{c}^{max}$$\end{document}.
引用
收藏
页码:1769 / 1773
页数:4
相关论文
共 70 条
[1]  
Batlogg B(1987)Isotope Effect in the High-Tc Superconductors Ba Phys. Rev. Lett. 58 2333-undefined
[2]  
Drozdov AP(2019)YCu Nature 569 528-undefined
[3]  
Kong PP(1968)O Phys Rev 167 331-undefined
[4]  
Minkov VS(1960) and Ba Sov. Phys. JETP 11 696-undefined
[5]  
Besedin SP(1995)EuCu Chem. Soc. Rev. 24 1-undefined
[6]  
Kuzovnikov MA(1987)0 Phys. Rev. Lett. 59 1460-undefined
[7]  
Mozaffari S(1955)Superconductivity at 250 K in Lanthanum Hydride under High Pressures Phys. Rev. 97 660-undefined
[8]  
Balicas L(1990)Transition Temperature of Strong-Coupled Superconductors Rev. Mod. Phys. 62 113-undefined
[9]  
Balakirev FF(1981)Interactions between Electrons and Lattice Vibrations in a Superconductor Phys. Rev. B 23 1796-undefined
[10]  
Graf DE(1987)Structure-Property Relationship in Superconducting Cuprates Phys. Rev. B 36 180-undefined