Fourier decomposition of properly elliptic boundary value problems in a half-plane

被引:0
作者
Patrick J. Rabier
机构
[1] University of Pittsburgh,Department of mathematics
来源
Annali di Matematica Pura ed Applicata | 2013年 / 192卷
关键词
Elliptic boundary value problem; Half-plane; Sobolev space; Fourier series; Fourier transform; -boundedness; 35B10; 35J25; 42A45; 43A50;
D O I
暂无
中图分类号
学科分类号
摘要
For a general class of second-order elliptic boundary value problems in the lower half-plane, we show that the existence and uniqueness of solutions in Lp Sobolev spaces is reduced to the invertibility of the ordinary differential operators obtained by Fourier decomposition. This terminology refers to the partial Fourier series expansion in the case of horizontally periodic solutions and to the partial Fourier transform otherwise. The problem is straightforward when p = 2 and, in the periodic case, the same question on a strip with finite width can also be quickly settled by indirect arguments irrespective of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p \in (1, \infty )}$$\end{document}. However, in the half-plane, the infinite depth raises serious difficulties when p ≠ 2. These difficulties are overcome by writing the problem as a first-order system and using existing abstract results about operator valued Fourier multipliers. In that approach, the randomized boundedness of the resolvent becomes the central issue.
引用
收藏
页码:1115 / 1140
页数:25
相关论文
共 28 条
[1]  
Arendt W.(2002)The operator-valued Marcinkiewicz multiplier theorem and maximal regularity Math. Z. 240 311-343
[2]  
Bu S.(2006)Maximal J. Evolut. Equs. 6 773-790
[3]  
Arendt W.(1961)-regularity for parabolic and elliptic equations on the line Duke Math. J. 28 301-324
[4]  
Duelli M.(1966)The spaces Ann. Math. Stat. 37 1494-1504
[5]  
Benedek A.(1991), with mixed norm Indag. Math. (N.S.) 2 453-460
[6]  
Panzone R.(2000)Martingale transforms Studia Math. 138 135-163
[7]  
Burkholder D.L.(1972)Some remarks on the Banach space valued Hilbert transform Appl. Anal. 2 115-129
[8]  
Clément P.(1991)Schauder decomposition and multiplier theorems Stud. Math. 99 23-39
[9]  
de Pagter B.(1977)Beispiele von pseudo-differentialoperator-algebren Commun. Partial Differ. Equs. 2 359-393
[10]  
Clément P.(1962)Interpolation of Orlicz-valued function spaces and U.M.D. property Ann. Sc. Norm. Sup. Pisa 16 1-44