Webs of W-algebras

被引:0
|
作者
Tomáš Procházka
Miroslav Rapčák
机构
[1] Ludwig Maximilian University of Munich,Arnold Sommerfeld Center for Theoretical Physics
[2] Perimeter Institute for Theoretical Physics,undefined
关键词
Conformal Field Theory; BRST Quantization; D-branes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We associate vertex operator algebras to (p, q)-webs of interfaces in the topologically twisted N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. Y-algebras associated to trivalent junctions are identified with truncations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra. Starting with Y-algebras as atomic elements, we describe gluing of Y-algebras analogous to that of the topological vertex. At the level of characters, the construction matches the one of counting D0-D2-D4 bound states in toric Calabi-Yau threefolds. For some configurations of interfaces, we propose a BRST construction of the algebras and check in examples that both constructions agree. We define generalizations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra and identify a large class of glued algebras with their truncations. The gluing construction sheds new light on the structure of vertex operator algebras conventionally constructed by BRST reductions or coset constructions and provides us with a way to construct new algebras. Many well-known vertex operator algebras, such as U(N)k affine Lie algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super-W∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_{\infty } $$\end{document}, Bershadsky-Polyakov W32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_3^{(2)} $$\end{document}, cosets and Drinfeld-Sokolov reductions of unitary groups can be obtained as special cases of this construction.
引用
收藏
相关论文
共 50 条
  • [41] Subregular W-algebras of type A
    Fehily, Zachary
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [42] The ABCDEFG of instantons and W-algebras
    Christoph A. Keller
    Noppadol Mekareeya
    Jaewon Song
    Yuji Tachikawa
    Journal of High Energy Physics, 2012
  • [43] Localization for affine W-algebras
    Dhillon, Gurbir
    Raskin, Sam
    ADVANCES IN MATHEMATICS, 2023, 413
  • [44] SINGULAR CONTRACTIONS OF W-ALGEBRAS
    HULL, CM
    PALACIOS, L
    MODERN PHYSICS LETTERS A, 1992, 7 (28) : 2619 - 2626
  • [45] THE CLASSICAL LIMIT OF W-ALGEBRAS
    FIGUEROAOFARRILL, JM
    RAMOS, E
    PHYSICS LETTERS B, 1992, 282 (3-4) : 357 - 364
  • [46] W-ALGEBRAS OF NEGATIVE RANK
    HORNFECK, K
    PHYSICS LETTERS B, 1995, 343 (1-4) : 94 - 102
  • [47] W-algebras and Whittaker categories
    Raskin, Sam
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [48] PROPERTY AA IN W-ALGEBRAS
    WILLIG, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A359 - A359
  • [49] Localization of Affine W-Algebras
    Arakawa, T.
    Kuwabara, T.
    Malikov, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (01) : 143 - 182
  • [50] Representation theory of W-algebras
    Arakawa, Tomoyuki
    INVENTIONES MATHEMATICAE, 2007, 169 (02) : 219 - 320