Webs of W-algebras

被引:0
|
作者
Tomáš Procházka
Miroslav Rapčák
机构
[1] Ludwig Maximilian University of Munich,Arnold Sommerfeld Center for Theoretical Physics
[2] Perimeter Institute for Theoretical Physics,undefined
关键词
Conformal Field Theory; BRST Quantization; D-branes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We associate vertex operator algebras to (p, q)-webs of interfaces in the topologically twisted N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. Y-algebras associated to trivalent junctions are identified with truncations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra. Starting with Y-algebras as atomic elements, we describe gluing of Y-algebras analogous to that of the topological vertex. At the level of characters, the construction matches the one of counting D0-D2-D4 bound states in toric Calabi-Yau threefolds. For some configurations of interfaces, we propose a BRST construction of the algebras and check in examples that both constructions agree. We define generalizations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra and identify a large class of glued algebras with their truncations. The gluing construction sheds new light on the structure of vertex operator algebras conventionally constructed by BRST reductions or coset constructions and provides us with a way to construct new algebras. Many well-known vertex operator algebras, such as U(N)k affine Lie algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super-W∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_{\infty } $$\end{document}, Bershadsky-Polyakov W32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_3^{(2)} $$\end{document}, cosets and Drinfeld-Sokolov reductions of unitary groups can be obtained as special cases of this construction.
引用
收藏
相关论文
共 50 条
  • [31] Modular finite W-algebras
    Goodwin, Simon M.
    Topley, Lewis W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5811 - 5853
  • [32] The ABCDEFG of instantons and W-algebras
    Keller, Christoph A.
    Mekareeya, Noppadol
    Song, Jaewon
    Tachikawa, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [33] W-Algebras and nonlinear equations
    Van Moerbeke, P
    ASTERISQUE, 1998, (252) : 105 - 129
  • [34] Finite W-algebras for glN
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    ADVANCES IN MATHEMATICS, 2018, 327 : 173 - 224
  • [35] Screening operators for W-algebras
    Genra, Naoki
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03): : 2157 - 2202
  • [36] SEMIINFINITE COHOMOLOGY OF W-ALGEBRAS
    BOUWKNEGT, P
    MCCARTHY, J
    PILCH, K
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) : 91 - 102
  • [37] ON THE CENTRAL CHARGE FOR THE W-ALGEBRAS
    HORNFECK, K
    PHYSICS LETTERS B, 1991, 255 (03) : 337 - 342
  • [38] Classical W-algebras for Centralizers
    Molev, A., I
    Ragoucy, E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 691 - 703
  • [39] Lectures on classical W-algebras
    Dickey, LA
    ACTA APPLICANDAE MATHEMATICAE, 1997, 47 (03) : 243 - 321
  • [40] W-algebras at the critical level
    Arakawa, Tomoyuki
    ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2012, 565 : 1 - 13