Webs of W-algebras

被引:0
|
作者
Tomáš Procházka
Miroslav Rapčák
机构
[1] Ludwig Maximilian University of Munich,Arnold Sommerfeld Center for Theoretical Physics
[2] Perimeter Institute for Theoretical Physics,undefined
关键词
Conformal Field Theory; BRST Quantization; D-branes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We associate vertex operator algebras to (p, q)-webs of interfaces in the topologically twisted N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. Y-algebras associated to trivalent junctions are identified with truncations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra. Starting with Y-algebras as atomic elements, we describe gluing of Y-algebras analogous to that of the topological vertex. At the level of characters, the construction matches the one of counting D0-D2-D4 bound states in toric Calabi-Yau threefolds. For some configurations of interfaces, we propose a BRST construction of the algebras and check in examples that both constructions agree. We define generalizations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra and identify a large class of glued algebras with their truncations. The gluing construction sheds new light on the structure of vertex operator algebras conventionally constructed by BRST reductions or coset constructions and provides us with a way to construct new algebras. Many well-known vertex operator algebras, such as U(N)k affine Lie algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super-W∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_{\infty } $$\end{document}, Bershadsky-Polyakov W32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_3^{(2)} $$\end{document}, cosets and Drinfeld-Sokolov reductions of unitary groups can be obtained as special cases of this construction.
引用
收藏
相关论文
共 50 条
  • [21] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    Losev, I.
    Tsymbaliuk, A.
    TRANSFORMATION GROUPS, 2014, 19 (02) : 495 - 526
  • [22] INFINITESIMAL CHEREDNIK ALGEBRAS AS W-ALGEBRAS
    I. LOSEV
    A. TSYMBALIUK
    Transformation Groups, 2014, 19 : 495 - 526
  • [23] W-algebras as coset vertex algebras
    Tomoyuki Arakawa
    Thomas Creutzig
    Andrew R. Linshaw
    Inventiones mathematicae, 2019, 218 : 145 - 195
  • [24] W-algebras related to parafermion algebras
    Dong, Chongying
    Lam, Ching Hung
    Yamada, Hiromichi
    JOURNAL OF ALGEBRA, 2009, 322 (07) : 2366 - 2403
  • [25] Urod algebras and Translation of W-algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Feigin, Boris
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [26] Quantum W-algebras and elliptic algebras
    Feigin, B
    Frenkel, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) : 653 - 677
  • [27] Abelian Real W-Algebras
    Li Minli
    Li Bingren Institute of Mathematics
    Acta Mathematica Sinica,English Series, 1998, (01) : 85 - 90
  • [28] ON THE CLASSIFICATION OF QUANTUM W-ALGEBRAS
    BOWCOCK, P
    WATTS, GMT
    NUCLEAR PHYSICS B, 1992, 379 (1-2) : 63 - 95
  • [29] Lectures on Classical W-Algebras
    L. A. Dickey
    Acta Applicandae Mathematica, 1997, 47 : 243 - 321
  • [30] A NOTE ON SUPER W-ALGEBRAS
    BILAL, A
    PHYSICS LETTERS B, 1990, 238 (2-4) : 239 - 241