Webs of W-algebras

被引:0
|
作者
Tomáš Procházka
Miroslav Rapčák
机构
[1] Ludwig Maximilian University of Munich,Arnold Sommerfeld Center for Theoretical Physics
[2] Perimeter Institute for Theoretical Physics,undefined
关键词
Conformal Field Theory; BRST Quantization; D-branes; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We associate vertex operator algebras to (p, q)-webs of interfaces in the topologically twisted N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills theory. Y-algebras associated to trivalent junctions are identified with truncations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra. Starting with Y-algebras as atomic elements, we describe gluing of Y-algebras analogous to that of the topological vertex. At the level of characters, the construction matches the one of counting D0-D2-D4 bound states in toric Calabi-Yau threefolds. For some configurations of interfaces, we propose a BRST construction of the algebras and check in examples that both constructions agree. We define generalizations of W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}1+∞ algebra and identify a large class of glued algebras with their truncations. The gluing construction sheds new light on the structure of vertex operator algebras conventionally constructed by BRST reductions or coset constructions and provides us with a way to construct new algebras. Many well-known vertex operator algebras, such as U(N)k affine Lie algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal algebra, N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super-W∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_{\infty } $$\end{document}, Bershadsky-Polyakov W32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{W}}_3^{(2)} $$\end{document}, cosets and Drinfeld-Sokolov reductions of unitary groups can be obtained as special cases of this construction.
引用
收藏
相关论文
共 50 条
  • [1] Webs of W-algebras
    Prochazka, Tomas
    Rapcak, Miroslav
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [2] MULTIDIMENSIONAL 3-WEBS WITH ELASTIC W-ALGEBRAS
    KHASINA, VI
    SIBERIAN MATHEMATICAL JOURNAL, 1976, 17 (04) : 708 - 711
  • [3] W-algebras
    ORaifeartaigh, L
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 79 - 85
  • [4] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [5] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [6] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718
  • [7] Trialities of W-algebras
    Creutzig, Thomas
    Linshaw, Andrew R.
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 69 - 194
  • [8] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381
  • [9] ON THE ORIGIN OF W-ALGEBRAS
    BILAL, A
    FOCK, VV
    KOGAN, II
    NUCLEAR PHYSICS B, 1991, 359 (2-3) : 635 - 672
  • [10] FOLDING THE W-ALGEBRAS
    FRAPPAT, L
    RAGOUCY, E
    SORBA, P
    NUCLEAR PHYSICS B, 1993, 404 (03) : 805 - 836