Holomorphic deformations of the Ricci-flat \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \overline \partial $$\end{document}-manifolds

被引:0
作者
Hai Sheng Liu
机构
[1] Zhejiang University,Center of Mathematical Sciences
关键词
Deformations of complex structures; Ricci-flat ; -manifold; 32G05; 58A14; 53C55; 14J32;
D O I
10.1007/s10114-016-5201-4
中图分类号
学科分类号
摘要
We present a construction of globally convergent power series of integrable Beltrami differentials on the Ricci-flat \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \overline \partial $$\end{document}-manifolds and also a construction of global canonical family of holomorphic (n, 0)-forms on the deformation spaces of the Ricci-flat \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \overline \partial $$\end{document}-manifolds.
引用
收藏
页码:643 / 658
页数:15
相关论文
共 13 条
  • [1] Clemens H.(2005)Geometry of formal kuranishi theory Adv. Math. 198 311-365
  • [2] Deligne P.(1975)Real homotopy theory of Kähler manifolds Invent. Math. 29 245-274
  • [3] Griffiths P.(1978)On automorphism groups of compact Kähler manifolds Invent. Math. 44 225-258
  • [4] Morgan J.(1968)Periods of integrals on algebraic manifolds ii. local study of the period mapping. Amer. J. Math. 90 805-865
  • [5] Fujiki A.(2014)Quasi-isometry and deformations of Calabi–Yau manifolds Invent. Math. 199 423-453
  • [6] Griffiths P.(1989)The Weil–Petersson geometry of the moduli space of SU(n = 3) (Calibi–Yau) manifolds I Commun. Math. Phys. 126 325-346
  • [7] Liu K.-F.(2015)Non-Kähler Calabi–Yau manifolds Analysis, Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong 644 261-277
  • [8] Rao S.(1989)Käler spaces and proper open morphisms Math. Ann. 283 13-52
  • [9] Yang X.-K.(2001)Moduli spaces of stable sheaves on abelian surfaces Math. Ann. 321 817-884
  • [10] Todorov A.(undefined)undefined undefined undefined undefined-undefined