The ϕ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^{6}$$\end{document}-model expansion method for solving the nonlinear conformable time-fractional Schrödinger equation with fourth-order dispersion and parabolic law nonlinearity

被引:0
作者
Elsayed M. E. Zayed
Abdul-Ghani Al-Nowehy
机构
[1] Zagazig University,Mathematics Department, Faculty of Science
[2] Taiz University,Mathematics Department, Faculty of Education and Science
关键词
The ; -model expansion method; Conformable fractional derivative; Jacobi elliptic function solutions; Exact solutions; Solitary wave solutions; Other solutions; Nonlinear Schrödinger equation;
D O I
10.1007/s11082-018-1426-z
中图分类号
学科分类号
摘要
The ϕ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^{6}$$\end{document}-model expansion method combined with the conformable time-fractional derivative is applied in this paper for finding many new exact solutions including Jacobi elliptic function solutions, solitary wave solutions, trigonometric function solutions and other solutions to the nonlinear conformable time-fractional Schrödinger equation with fourth-order dispersion and parabolic law nonlinearity. This method presents a wider applicability for handling the nonlinear partial differential equations. Comparing our results with the well-known results are given.
引用
收藏
相关论文
共 130 条
[1]  
Abdeljawad T(2015)On conformable fractional calculus J. Comput. Appl. Math. 279 57-66
[2]  
Abu Hammad M(2014)Conformable fractional heat differential equation Int. J. Pure. Appl. Math. 94 215-221
[3]  
Khalil R(2007)Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models J. Math. Anal. Appl. 325 542-553
[4]  
Ahmed E(2017)Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method Optik 136 445-450
[5]  
El-Sayed AMA(2009)Optical solitons with fourth order dispersion and dual-power law nonlinearity Int. J. Nonlinear Sci. 7 443-447
[6]  
El-Saka HA(2008)Optical solitons in a Kerr law media with fourth order dispersion Adv. Studies Theor. Phys. 20 1007-1012
[7]  
Arnous AH(2014)Symbolic computation of some nonlinear fractional differential equations Rom. J. Phys. 59 0433-0442
[8]  
Ullah MZ(2018)Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method Optik 156 784-790
[9]  
Asma M(2016)Exact traveling wave solutions to the fourth-order dispersive nonlinear Schr ödinger equation with dual-power law nonlinearity Math. Methods Appl. Sci. 39 1135-1143
[10]  
Moshokoa SP(2016)Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives Optik 127 10659-10669