Every 2-csp Allows Nontrivial Approximation

被引:0
作者
Johan Håstad
机构
[1] Royal Institute of Technology,School of Computer Science and Communication
来源
computational complexity | 2008年 / 17卷
关键词
Semi-definite programming; constraint satisfaction; approximation algorithms; 68W25; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We use semidefinite programming to prove that any constraint satisfaction problem in two variables over any domain allows an efficient approximation algorithm that does better than picking a random assignment. Specifically we consider the case when each variable can take values in [d] and that each constraint rejects t out of the d2 possible input pairs. Then, for some universal constant c, we can, in probabilistic polynomial time, find an assignment whose objective value is, in expectation, within a factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1- \frac{t} {d^{2}} +\frac{ct} {d^{4}log d}$$\end{document} of optimal, improving on the trivial bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1- \frac{t} {d^{2}}$$\end{document}.
引用
收藏
页码:549 / 566
页数:17
相关论文
empty
未找到相关数据