We use semidefinite programming to prove that any constraint satisfaction problem in two variables over any domain allows an efficient approximation algorithm that does better than picking a random assignment. Specifically we consider the case when each variable can take values in [d] and that each constraint rejects t out of the d2 possible input pairs. Then, for some universal constant c, we can, in probabilistic polynomial time, find an assignment whose objective value is, in expectation, within a factor \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1- \frac{t} {d^{2}} +\frac{ct} {d^{4}log d}$$\end{document} of optimal, improving on the trivial bound of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1- \frac{t} {d^{2}}$$\end{document}.