Construction of mutually unbiased maximally entangled bases in C2s⊗C2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2^s}\otimes {\mathbb {C}}^{2^s}$$\end{document} by using Galois rings

被引:0
作者
Dengming Xu
机构
[1] Civil Aviation University of China,Sino
关键词
Mutually unbiased bases; Mutually unbiased maximally entangled states; Galois rings; Trace-zero excluded subsets; Unitary matrices;
D O I
10.1007/s11128-020-02670-0
中图分类号
学科分类号
摘要
Mutually unbiased bases plays a central role in quantum mechanics and quantum information processing. As an important class of mutually unbiased bases, mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have attracted much attention in recent years. In the paper, we try to construct MUMEBs in C2s⊗C2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2^s}\otimes {\mathbb {C}}^{2^s}$$\end{document} by using Galois rings, which is different from the work in [17], where finite fields are used. As applications, we obtain several new types of MUMEBs in C2s⊗C2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2^s}\otimes {\mathbb {C}}^{2^s}$$\end{document} and prove that M(2s,2s)≥3(2s-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(2^s,2^s)\ge 3(2^s-1)$$\end{document}, which raises the lower bound of M(2s,2s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(2^s,2^s)$$\end{document} given in [16].
引用
收藏
相关论文
共 29 条
  • [1] Appleby DM(2005)Symmetric informationally complete-positive operator valued measures and the extended Clifford group J. Math. Phys. 46 052107-528
  • [2] Bandyopadhyay S(2002)A new proof for the existence of mutually unbiased bases Algorithmica 34 512-1164
  • [3] Boykin PO(2018)New bounds of mutually unbiased bases in Quantum Inf. Comput. 18 1152-640
  • [4] Roychowdhury V(2005)About mutually unbiased bases in even and odd prime power dimensions J. Phys. A Math. Gen. 38 5267-962
  • [5] Vatan F(2010)On mutually unbiased bases Int. J. Quantum Inf. 8 535-2300
  • [6] Cheng XY(2009)Deterministic quantum distribution of a Quantum Inf. Comput. 9 950-381
  • [7] Shang Y(2017)-ary key Quantum Inf. Process 16 159-undefined
  • [8] Durt T(2008)Mutually unbiased maximally entangled bases in J. Phys. A 41 055308-undefined
  • [9] Durt T(2016)Optimizing quantum process tomography with unitary Phys. Rev. A 94 052328-undefined
  • [10] Englert BG(2015)-designs Quantum Inf. Process. 14 2291-undefined