Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete

被引:0
|
作者
Guanyu Zhao
Marco di Prisco
Lucie Vandewalle
机构
[1] KU Leuven,Department of Civil Engineering
[2] Politecnico di Milano,Department of Civil and Environmental Engineering
来源
Materials and Structures | 2015年 / 48卷
关键词
Steel fibre reinforced concrete; Pre-cracking; Tensile creep; Irreversible crack opening; Crack opening displacement;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the uniaxial tensile creep behavior of pre-cracked steel fiber reinforced concrete. Hooked-end fiber RC65/60BN with fiber dosage of 80 kg/m3 was used with normal strength concrete. A suitable tensile creep frame and a pre-cracking test set-up were developed. Cylindrical specimens were pre-cracked at crack opening displacement (COD) of 0.05 and 0.2 mm respectively before the tensile creep test. The pre-cracked specimens were loaded at a load level of 30 % of the maximum pre-cracking load Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\max }$$\end{document}. The specimens were unloaded after 3 months and then reloaded to 60 % of Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\max}$$\end{document}. Time dependent COD were continuously measured by LVDTs under constant temperature of 20° and relative humidity of 60 %. The measured time dependent COD Wtotal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm total}$$\end{document} was considered as the summation of three parts, the irreversible part Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document}, the instantaneous part Winst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm inst}$$\end{document} and the creep part Wcreep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm creep}$$\end{document}. It was observed that Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document} and the loading level have a great impact on the tensile creep behavior. For the specimens with a pre-cracking COD of 0.05 mm, the maximum creep deformation Wcreep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm creep}$$\end{document} is almost the same as the initial instantaneous deformation Wisnt.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{isnt.}$$\end{document} after 3 months loading. For the specimens pre-cracked at 0.2 mm, the damage evolution at the fibre/matrix interface in terms of irreversible crack opening and load level is also discussed. It is interesting to be noted that the creep deformation under load level of 30 % will not introduce extra damage even though the Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document} increases.
引用
收藏
页码:3173 / 3185
页数:12
相关论文
共 50 条
  • [41] Experimental Investigation on Isolated Strut Behavior of High Strength Steel Fiber Reinforced Concrete Panels
    Kuo C.-C.
    Hung C.-W.
    Liao W.-C.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2020, 32 (04): : 367 - 375
  • [42] Experimental Behavior of Cracked Reinforced Concrete Columns Strengthened with Reinforced Concrete Jacketing
    Mohamed Sayed, Ahmed
    Mohamed Rashwan, Mohamed
    Emad Helmy, Mohamed
    MATERIALS, 2020, 13 (12) : 1 - 14
  • [43] A study on the uniaxial behavior of hybrid graded fiber reinforced concrete with glass and steel fibers
    Prathipati, S. R. R. Teja
    Rao, C. B. K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 32 : 764 - 770
  • [44] Eccentric Tensile Behavior of Steel-Steel Fiber Reinforced Concrete Composite Bridge Deck
    Xu C.
    Xu Y.
    Li X.
    Hou Z.
    Tongji Daxue Xuebao/Journal of Tongji University, 2023, 51 (06): : 884 - 894
  • [45] Effect of steel fiber on creep behavior of concrete
    Zhao, Q. (zhaoqx2002@163.com), 2013, Chinese Ceramic Society (41):
  • [46] Acoustic emission fractal characteristics analysis of steel fiber reinforced concrete during uniaxial tensile damage
    Wang Y.
    Yan C.
    Zhang T.
    Wang N.
    Chen L.
    Jie G.
    Materialpruefung/Materials Testing, 2020, 62 (03): : 329 - 336
  • [47] Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete
    Tayfun Uygunoğlu
    Materials and Structures, 2008, 41 : 1441 - 1449
  • [48] An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete
    Murali, Kallempudi
    Meena, T.
    ADVANCES IN CONCRETE CONSTRUCTION, 2021, 12 (06) : 499 - 505
  • [49] Acoustic emission fractal characteristics analysis of steel fiber reinforced concrete during uniaxial tensile damage
    Wang, Yan
    Yan, Chao
    Zhang, Tinging
    Wang, Na
    Chen, Lijun
    Jie, Gu
    MATERIALS TESTING, 2020, 62 (03) : 329 - 336
  • [50] Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete
    Uygunoglu, Tayfun
    MATERIALS AND STRUCTURES, 2008, 41 (08) : 1441 - 1449