Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete

被引:0
|
作者
Guanyu Zhao
Marco di Prisco
Lucie Vandewalle
机构
[1] KU Leuven,Department of Civil Engineering
[2] Politecnico di Milano,Department of Civil and Environmental Engineering
来源
Materials and Structures | 2015年 / 48卷
关键词
Steel fibre reinforced concrete; Pre-cracking; Tensile creep; Irreversible crack opening; Crack opening displacement;
D O I
暂无
中图分类号
学科分类号
摘要
This paper mainly investigates the uniaxial tensile creep behavior of pre-cracked steel fiber reinforced concrete. Hooked-end fiber RC65/60BN with fiber dosage of 80 kg/m3 was used with normal strength concrete. A suitable tensile creep frame and a pre-cracking test set-up were developed. Cylindrical specimens were pre-cracked at crack opening displacement (COD) of 0.05 and 0.2 mm respectively before the tensile creep test. The pre-cracked specimens were loaded at a load level of 30 % of the maximum pre-cracking load Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\max }$$\end{document}. The specimens were unloaded after 3 months and then reloaded to 60 % of Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\max}$$\end{document}. Time dependent COD were continuously measured by LVDTs under constant temperature of 20° and relative humidity of 60 %. The measured time dependent COD Wtotal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm total}$$\end{document} was considered as the summation of three parts, the irreversible part Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document}, the instantaneous part Winst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm inst}$$\end{document} and the creep part Wcreep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm creep}$$\end{document}. It was observed that Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document} and the loading level have a great impact on the tensile creep behavior. For the specimens with a pre-cracking COD of 0.05 mm, the maximum creep deformation Wcreep\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm creep}$$\end{document} is almost the same as the initial instantaneous deformation Wisnt.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{isnt.}$$\end{document} after 3 months loading. For the specimens pre-cracked at 0.2 mm, the damage evolution at the fibre/matrix interface in terms of irreversible crack opening and load level is also discussed. It is interesting to be noted that the creep deformation under load level of 30 % will not introduce extra damage even though the Wirr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\rm irr}$$\end{document} increases.
引用
收藏
页码:3173 / 3185
页数:12
相关论文
共 50 条
  • [1] Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete
    Zhao, Guanyu
    di Prisco, Marco
    Vandewalle, Lucie
    MATERIALS AND STRUCTURES, 2015, 48 (10) : 3173 - 3185
  • [2] Uniaxial tensile creep of a cracked polypropylene fiber reinforced concrete
    Vrijdaghs, Rutger
    di Prisco, Marco
    Vandewalle, Lucie
    MATERIALS AND STRUCTURES, 2018, 51 (01)
  • [3] Uniaxial tensile creep of a cracked polypropylene fiber reinforced concrete
    Rutger Vrijdaghs
    Marco di Prisco
    Lucie Vandewalle
    Materials and Structures, 2018, 51
  • [4] Experimental Investigation on Uniaxial Tensile Properties of Steel Fiber Reinforced Concrete
    Ding, Yining
    Yan, Yingchao
    ADVANCES IN STRUCTURAL ENGINEERING, PTS 1-3, 2011, 94-96 : 731 - 735
  • [5] Flexural creep of steel fiber reinforced concrete in the cracked state
    Garcia-Taengua, E.
    Arango, S.
    Marti-Vargas, J. R.
    Serna, P.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 65 : 321 - 329
  • [6] Tensile basic creep behavior of lightweight aggregate concrete reinforced with steel fiber
    Zheng, Xiaoyan
    Ji, Tao
    Easa, Said M.
    Zhang, Binbin
    Jiang, Zhenliang
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 200 : 356 - 367
  • [7] Tensile Creep in torn ultra-high-strength fiber-reinforced Concrete (UHPFRC) Experimental Investigation on cracked Tensile Specimens
    Casucci, Daniele
    BETON- UND STAHLBETONBAU, 2017, 112 (07) : 440 - 440
  • [8] Experimental Investigation of the Flexural Behavior of Steel Fiber Reinforced Concrete
    Karzad, A. S.
    Al-Sadoon, Z.
    Leblouba, M.
    Maalej, M.
    2ND INTERNATIONAL CONFERENCE ON MATERIALS TECHNOLOGY AND ENERGY, 2020, 943
  • [9] Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression
    Li, Biao
    Xu, Lihua
    Chi, Yin
    Huang, Biao
    Li, Changning
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 140 : 109 - 118
  • [10] Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete
    Michels, Julien
    Christen, Rouven
    Waldmann, Daniele
    ENGINEERING FRACTURE MECHANICS, 2013, 98 : 326 - 349