Influence of iron doping on morphological, structural and optical properties of zinc oxide thin films prepared by dip-coating method

被引:2
作者
Zegadi C. [1 ]
Abderrahmane A. [2 ]
Chaumont D. [3 ]
Lacroute Y. [3 ]
Abdelkebir K. [4 ]
Hamzaoui S. [1 ]
Adnane M. [1 ]
机构
[1] Laboratory of Electron Microscopy and Materials Sciences, University of Science and Technology of Oran, El-Mnaouer Oran
[2] Organization for Research Promotion, Research Promotion Center, The University of Electro-Communications (UEC) 1-5-1 Chofugaoka Chofu, Tokyo
[3] NanoForm–ICB, Université de Bourgogne, Dijon
[4] Equipe Surfaces, Interfaces, Procédés (SIP), Centre des Matériaux P.M. FOURT, École des Mines de Paris–MINES Paris Tech, Paris
关键词
energy dispersive spectroscopy; Fe-doping ZnO; polycrystalline ZnO; scanning electron microscopy; sol-gel dip-coating; ultraviolet–visible spectroscopy; X-ray diffraction; X-ray photoelectron spectroscopy;
D O I
10.3103/S1068375516040128
中图分类号
学科分类号
摘要
Undoped zinc oxide and iron-doped zinc oxide thin films have been deposited by the sol-geldipcoating method. The Fe/Zn nominal volume ratio was 5% in the solution. The effects of Fe incorporation on morphological, structural, and optical properties of ZnO films were investigated. The scanning electron microscopy measurements showed that the surface morphology of the prepared thin films was affected by Fe doping. The X-ray diffraction patterns of the thin films showed that doped incorporation leads to substantial changes in the structural characteristics of ZnO thin films. The optical absorption measurements indicated a band gap in the range of 3.31 to 3.19 eV. The X-ray photoelectron spectroscopy demonstrated that Fe is incorporated in the ZnO matrix with 6.5 atomic percent (at %). The energy dispersive spectroscopy studies indicated the formation of ZnO with high efficiency. © 2016, Allerton Press, Inc.
引用
收藏
页码:362 / 369
页数:7
相关论文
共 17 条
  • [1] Gyu-Chul Y., Chunrui W., Won I.P.A., Semicond. Sci. Technol., 20, 4, (2005)
  • [2] Baoquan S., Henning S., Nano Lett., 5, 12, pp. 2408-2413, (2005)
  • [3] Djurisic A.B., Ng A.M.C., Chen X.Y., Prog. Quantum Electron., 34, 4, pp. 191-259, (2010)
  • [4] Chitra A., Oliver K., Gunnar S., Hilde S., Et al., Thin Solid Films, 442, 2, pp. 167-172, (2003)
  • [5] Buchholz D.B., Liu J., Tobin J.M., Zhang M., Et al., ACS Appl. Mater. Interfaces, 10, 1, pp. 2147-2153, (2009)
  • [6] Inamdar D.Y., Arjun K., Dubenko P.I., Naushad A., Et al., J. Phys. Chem. C, 115, 48, pp. 23671-23676, (2011)
  • [7] Baranowska-Korczyc A., Reszka A., Sobczak K., Sikora B., Et al., J. Sol-Gel Sci. Technol., 61, pp. 494-500, (2012)
  • [8] Xiaohong S., Xudong H., Yongchao W., Rui X., Et al., J. Phys. Chem. C, 119, 6, pp. 3228-3237, (2015)
  • [9] Zegadi C., Abdelkebir K., Chaumont D., Adnane M., Et al., Adv. Mater. Phys. Chem., 4, 5, pp. 93-104, (2014)
  • [10] Chelouche A., Djouadi D., Aksas A., Eur. Phys. J. Appl. Phys., 64, (2013)