Parameterized Algorithms for List K-Cycle

被引:0
作者
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] HBNI,The Institute of Mathematical Science
来源
Algorithmica | 2019年 / 81卷
关键词
Parameterized complexity; -cycle; Colorful path; -path;
D O I
暂无
中图分类号
学科分类号
摘要
The classic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Cycle problem asks if a graph G, with vertex-set V(G), has a simple cycle containing all vertices of a given set K⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subseteq V(G)$$\end{document}. In terms of colored graphs, it can be rephrased as follows: Given a graph G, a set K⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subseteq V(G)$$\end{document} and an injective coloring c:K→{1,2,…,|K|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: K\rightarrow \{1,2,\ldots ,|K|\}$$\end{document}, decide if G has a simple cycle containing each color in {1,2,…,|K|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,\ldots ,|K|\}$$\end{document} exactly once. Another problem widely known since the introduction of color coding is Colorful Cycle. Given a graph G and a coloring c:V(G)→{1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: V(G)\rightarrow \{1,2,\ldots ,k\}$$\end{document} for some k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \mathbb {N}$$\end{document}, it asks if G has a simple cycle of length k containing each color in {1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,2,\ldots ,k\}$$\end{document} exactly once. We study a generalization of these problems: Given a graph G, a set K⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subseteq V(G)$$\end{document}, a list-coloring L:K→2{1,2,…,k∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L: K\rightarrow 2^{\{1,2,\ldots ,k^*\}}$$\end{document} for some k∗∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^*\in \mathbb {N}$$\end{document} and a parameter k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \mathbb {N}$$\end{document}, ListK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Cycle asks if one can assign a color to each vertex in K so that G has a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors. We design a randomized algorithm for ListK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Cycle running in time 2knO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^kn^{{{\mathcal {O}}}(1)}$$\end{document} on an n-vertex graph, matching the best known running times of algorithms for both K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Cycle and Colorful Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal. We also study a variant of ListK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Cycle that generalizes the classic Hamiltonicity problem, where one specifies the size of a solution. Our results integrate three related algebraic approaches, introduced by Björklund, Husfeldt and Taslaman (SODA’12), Björklund, Kaski and Kowalik (STACS’13), and Björklund (FOCS’10).
引用
收藏
页码:1267 / 1287
页数:20
相关论文
共 52 条
  • [1] Alon N(1995)Color coding J. ACM 42 844-856
  • [2] Yuster R(2014)Determinant sums for undirected hamiltonicity SIAM J. Comput. 43 280-299
  • [3] Zwick U(2017)Narrow sieves for parameterized paths and packings J. Comput. Syst. Sci. 87 119-139
  • [4] Björklund A(2016)Constrained multilinear detection and generalized graph motifs Algorithmica 74 947-967
  • [5] Björklund A(1993)On linear time minor tests with depth-first search J. Algorithms 14 1-23
  • [6] Husfeldt T(2016)On problems as hard as CNF-SAT ACM Trans. Algorithms 12 41:1-41:24
  • [7] Kaski P(1978)A probabilistic remark on algebraic program testing Inf. Process Lett. 7 193-195
  • [8] Koivisto M(1992)Detecting cycles through three fixed vertices in a graph Inf. Process Lett. 41 29-33
  • [9] Björklund A(2017)Representative families of product families ACM Trans. Algorithms 13 36-29:60
  • [10] Kaski P(2016)Efficient computation of representative families with applications in parameterized and exact algorithms J. ACM 63 29:1-121