Analytical solution of a class of Lane–Emden equations: Adomian decomposition method

被引:0
|
作者
Richard Olu Awonusika
机构
[1] Adekunle Ajasin University,Department of Mathematical Sciences
来源
The Journal of Analysis | 2024年 / 32卷
关键词
Lane–Emden differential equation; Analytical solution; Adomian polynomials; Jacobi polynomials; Jacobi functions; Spherical functions; Symmetric spaces; 33C05; 33C45; 34A08; 34B16; 65L05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the analytical solution of a class of Lane–Emden equation is considered using the Adomian decomposition method. The nonlinear term of the proposed equation is given by normalised Jacobi functions Pγ(α,β)(y(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_{\gamma }^{(\alpha , \beta )}(y(x))$$\end{document} (γ∈C;α,β>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in {\mathbb {C}};\alpha ,\beta >-1$$\end{document}). The Adomian polynomials for the Jacobi functions Pγ(α,β)(y(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_{\gamma }^{(\alpha , \beta )}(y(x))$$\end{document} are constructed and the power series solutions are presented. For the special cases γ=0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =0,1$$\end{document}; closed form solutions are obtained. Interestingly, the functions Pγ(α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}_{\gamma }^{(\alpha , \beta )}$$\end{document} are the spherical functions (normalised eigenfunctions) of the Laplacian on rank one symmetric spaces. In order to present several examples of Lane-Emden type equations and their solutions, we specialise to the spherical functions on the real hyperbolic space and sphere (α=β=(n-2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\beta =(n-2)/2$$\end{document}), the complex hyperbolic space (α=n-1,β=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =n-1,\beta =0$$\end{document}), the quaternionic hyperbolic space (α=2n-1,β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =2n-1,\beta =1$$\end{document}), and the Cayley hyperbolic plane (α=7,β=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =7,\beta =3$$\end{document}), as well as their corresponding projective spaces. Comparisons of the results from the present method with other published results show that the Adomian decomposition method gives accurate and reliable approximate solutions of Lane–Emden equations involving Jacobi functions.
引用
收藏
页码:1009 / 1056
页数:47
相关论文
共 50 条