Breast cancer detection and classification using metaheuristic optimized ensemble extreme learning machine

被引:2
作者
Pattnaik R.K. [1 ]
Siddique M. [1 ]
Mishra S. [2 ]
Gelmecha D.J. [2 ]
Singh R.S. [2 ]
Satapathy S. [3 ]
机构
[1] Department of Mathematics, Centurion University of Technology and Management, Odisha, Bhubaneswar
[2] Department of ECE, Adama Science and Technology University, Adama
[3] Department of Zoology, Centurion University of Technology and Management, Odisha, Bhubaneswar
关键词
Accelerated particle swarm optimization; Breast cancer; Extreme learning machine; Fuzzy C means; Water cycle algorithm; Wavelet transform;
D O I
10.1007/s41870-023-01533-y
中图分类号
学科分类号
摘要
Breast cancer deaths are increasing rapidly due to the abnormal growth of breast cells in the women's milk duct. Manual cancer diagnosis from mammogram images is also difficult for radiologists and medical practitioners. This paper proposes a novel metaheuristic algorithm-based machine learning model and Fuzzy C Means-based segmentation technique for the classification and detection of breast cancer from mammogram images. At first instance, the fuzzy factor improved fast and robust fuzzy c means (FFI-FRFCM) segmentation is proposed for the segmentation by modifying the member partition matrix of the FRFCM technique. Secondly, a hybrid improved water cycle algorithm-Accelerated particle swarm optimization (IWCA-APSO) optimization, is proposed for weight optimization of the ensemble extreme learning machine (EELM) model. Three benchmark functions are taken for optimization to demonstrate the proposed hybrid IWCA-APSO algorithm's uniqueness. With the INbreast dataset, the IWCA-APSO-based EELM classification shown the sensitivity, specificity, accuracy, and computational time as 99.67%, 99.71%, 99.36%, and 23.8751 s respectively. The proposed IWCA-APSO-based EELM model performs better than the traditional models at classifying breast cancer. © 2023, The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management.
引用
收藏
页码:4551 / 4563
页数:12
相关论文
共 50 条
  • [1] Seizure detection using integrated metaheuristic algorithm based ensemble extreme learning machine
    Panda S.
    Mishra S.
    Mohanty M.N.
    Satapathy S.
    Measurement: Sensors, 2023, 25
  • [2] Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning
    Kumar, Mukesh
    Singhal, Saurabh
    Shekhar, Shashi
    Sharma, Bhisham
    Srivastava, Gautam
    SUSTAINABILITY, 2022, 14 (21)
  • [3] Breast Cancer Detection and Analytics Using Hybrid CNN and Extreme Learning Machine
    Sureshkumar, Vidhushavarshini
    Prasad, Rubesh Sharma Navani
    Balasubramaniam, Sathiyabhama
    Jagannathan, Dhayanithi
    Daniel, Jayanthi
    Dhanasekaran, Seshathiri
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (08):
  • [4] Breast Cancer Classification Using AdaBoost-Extreme Learning Machine
    Sharifmoghadam, Mahboobe
    Jazayeriy, Hamid
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [5] Determination of wheat types using optimized extreme learning machine with metaheuristic algorithms
    Musa Dogan
    Ilker Ali Ozkan
    Neural Computing and Applications, 2023, 35 : 12565 - 12581
  • [6] Determination of wheat types using optimized extreme learning machine with metaheuristic algorithms
    Dogan, Musa
    Ozkan, Ilker Ali
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17) : 12565 - 12581
  • [7] Breast cancer detection in thermal images using extreme learning machine
    Abo El-Soud, Mohammed W.
    Eltoukhy, Mohamed Meselhy
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2673 - 2681
  • [8] Hybrid WCA–PSO Optimized Ensemble Extreme Learning Machine and Wavelet Transform for Detection and Classification of Epileptic Seizure from EEG Signals
    Sreelekha Panda
    Satyasis Mishra
    Mihir Narayana Mohanty
    Augmented Human Research, 2023, 8 (1)
  • [9] A Novel Ensemble Bagging Classification Method for Breast Cancer Classification Using Machine Learning Techniques
    Ponnaganti, Naga Deepti
    Anitha, Raju
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 229 - 237
  • [10] An Efficient Breast Cancer Detection Using Machine Learning Classification Models
    Kumar, B. N. Ravi
    Gowda, Naveen Chandra
    Ambika, B. J.
    Veena, H. N.
    Ben Sujitha, B.
    Ramani, D. Roja
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (13) : 24 - 40