Effect of Thermal Treatments on Ni–Mn–Ga and Ni-Rich Ni–Ti–Hf/Zr High-Temperature Shape Memory Alloys

被引:12
作者
Santamarta R. [1 ]
Evirgen A. [2 ]
Perez-Sierra A.M. [1 ]
Pons J. [1 ]
Cesari E. [1 ]
Karaman I. [2 ]
Noebe R.D. [3 ]
机构
[1] Departament de Física, Universitat de les Illes Balears, Cra. de Valldemossa, km 7.5, Palma De Mallorca
[2] Department of Materials Science and Engineering, Texas A&M University, College Station, 77843, TX
[3] Structures and Materials Division, NASA Glenn Research Center, Cleveland, 44135, OH
关键词
Aging; Ni–Mn–Ga; Ni–Ti–Hf; Ni–Ti–Zr; Thermal cycling; Thermal stability;
D O I
10.1007/s40830-015-0043-y
中图分类号
学科分类号
摘要
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni–Mn–Ga and the Ni–Ti–Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni–Mn–Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ∼5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni–Ti–Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation. © 2015, ASM International.
引用
收藏
页码:418 / 428
页数:10
相关论文
共 42 条
[1]  
Ma J., Karaman I., Noebe R.D., High temperature shape memory alloys, Int Mater Rev, 55, pp. 257-315, (2010)
[2]  
Ullakko K., Huang J.K., Kantner C., O'Handley R.C., Kokorin V.V., Large magnetic-field-induced strains in Ni<sub>2</sub>MnGa single crystals, Appl Phys, 69, pp. 1966-1968, (1996)
[3]  
Sozinov A., Likhachev A.A., Lanska N., Ullakko K., Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl Phys Lett, 80, pp. 1746-1748, (2002)
[4]  
Mullner P., Chernenko V.A., Kostorz G., Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite, Scr dMater, 49, pp. 129-133, (2003)
[5]  
Chernenko V.A., Cesari E., Kokorin V.V., Vitenko I.N., The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system, Scr Metall Mater, 33, pp. 1239-1244, (1995)
[6]  
Chernenko V.A., V. L’vov, J. Pons, E. Cesari: superelasticity in high-temperature Ni–Mn–Ga alloys, J Appl Phys, 93, pp. 2394-2399, (2003)
[7]  
L'vov V.A., Kosogor A., Barandiaran J.M., Chernenko V.A., Destabilization of Ni–Mn–Ga martensite: experiment and theory, Acta Mater, 60, pp. 1587-1593, (2012)
[8]  
Xu H., Ma Y., Jiang C., A high-temperature shape-memory alloy Ni<sub>54</sub>Mn<sub>25</sub>Ga<sub>21</sub> , Appl Phys Lett, 82, pp. 3206-3208, (2003)
[9]  
Li Y., Xin Y., Jiang C., Xu H., Shape memory effect of grain refined Ni<sub>54</sub>Mn<sub>25</sub>Ga<sub>21</sub> alloy with high transformation temperature, Scr Mater, 51, pp. 849-852, (2004)
[10]  
Ma Y., Jiang C., Li Y., Xu H., Wang C., Liu X., Study of Ni<sub>50 + x</sub>Mn<sub>25</sub>Ga<sub>25-x</sub> (x = 2–11) as high-temperature shape-memory alloys, Acta Mater, 55, pp. 1533-1541, (2007)