Realistic continuous-variable quantum teleportation using a displaced Fock state channel

被引:0
作者
Arpita Deepak
机构
[1] J. C. Bose University of Science and Technology,Department of Mathematics
[2] YMCA,undefined
来源
Quantum Information Processing | / 21卷
关键词
Displaced Fock state; Characteristic function; Ideal and realistic quantum teleportation; Fidelity;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate ideal and non-ideal continuous-variable quantum teleportation protocols realized by using an entangled displaced Fock state resource. The characteristic function formulation is applied to measure the relative performance of displaced Fock state for teleporting squeezed and coherent states. It is found that for such single-mode input fields, the average fidelity remains at the classical threshold, suggesting that the displaced Fock states are not advantageous for teleportation. We also discuss the major decoherence effects, caused by the inaccuracy in Bell measurements and photon losses for the propagation of optical fields via fibre channels. The changes in the teleportation fidelity are described by adjusting the gain factor (g), reflectivity (R), mode damping (τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}), and the number of thermal photons (nth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_\mathrm {th}$$\end{document}). The possibility of successful teleportation can be optimized by fixing these realistic parameters.
引用
收藏
相关论文
共 121 条
[1]  
Wunsche A(1991)Displaced Fock states and their connection to quasiprobabilities Quant. Opt. 3 359-108
[2]  
Moya-Cessa H(1993)Series representation of quantum-field quasiprobabilities Phys. Rev. A 48 2479-undefined
[3]  
Knight PL(1994)Large-scale fluctuations in the driven Jaynes-Cummings model Phys. Rev. A 49 1993-undefined
[4]  
Dutra SM(1992)Dynamic Stark effect for the Jaynes-Cummings system Phys. Rev. A 45 5135-undefined
[5]  
Knight PL(1969)Ordered expansions in boson amplitude operators Phys. Rev. 177 1857-undefined
[6]  
Moya-Cessa H(1969)Density operators and quasiprobability distributions Phys. Rev. 177 1882-undefined
[7]  
Alsing P(1973)Semicoherent states J. Phys. A: Math. Nucl. Gen. 6 589-undefined
[8]  
Guo D-S(1982)Generalized coherent states and the uncertainty principle Phy J. Rev. D 25 3413-undefined
[9]  
Carmichael H(1985)Generalized coherent states and generalized squeezed coherent states Phys. Rev. D 32 400-undefined
[10]  
Cahill KE(1990)Properties of displaced number states Phys. Rev. A 41 2645-undefined