Locally Homogeneous Four-Dimensional Manifolds of Signature (2,2)

被引:0
作者
Mohammad Chaichi
Amirhesam Zaeim
机构
[1] Payame noor University,Department of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2013年 / 16卷
关键词
Neutral metric; Ricci tensor; Curvature homogeneous space; 53C30; 53C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider 4-dimensional neutral-signature curvature models and obtain the complete classification of the Ricci operator. We then consider the property of curvature homogeneity for the above manifolds and prove that every complete, connected and simply connected 1-curvature homogeneous 4-dimensional manifold of signature (2,2) with a non-degenerate Ricci operator is isometric to a four-dimensional Lie group equipped with a left invariant neutral metric. We also classify Ricci-parallel curvature homogeneous 4-dimensional manifolds of signature (2,2).
引用
收藏
页码:345 / 361
页数:16
相关论文
共 40 条
  • [1] Bueken P(1997)Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures J. Math. Phys. 38 1000-1013
  • [2] Bueken P(1997) = J. Geom. Phys. 22 349-362
  • [3] Bueken P(1997) ≠ Class Quantum Grav. 14 93-96
  • [4] Vanhecke L(1990)On curvature homogeneous three-dimensional Lorentzian manifolds J. Geom. Phys. 7 571-591
  • [5] Cahen M(2008)Examples of curvature homogeneous Lorentz metrics J. Geom. Phys. 58 291-292
  • [6] Leroy J(2007)Lorentz manifolds modelled on a Lorentz symmetric space J. Geom. Phys. 57 1279-1291
  • [7] Parker M(2008)Addendum to Homogeneous structures on three-dimensional Lorentzian manifolds [J Geom. Phys. 1279–1291 (2007)] Diff. Geom. Appl. 26 419-433
  • [8] Tricerri F(2009)Homogeneous structures on three-dimensional Lorentzian manifolds Ann. Glob. Anal. Geom. 36 1-17
  • [9] Vanhecke L(2012)Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues Can. J. Math. 64 778-804
  • [10] Calvaruso G(2013)Curvature homogeneous Lorentzian three-manifolds Diff. Geom. Appl. 31 496-509