Percolation of Estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} by the Method of Alternating Projections

被引:0
作者
Kenneth D. Koenig
Jeffery D. McNeal
机构
[1] Ohio State University,Department of Mathematics
关键词
Percolation of estimates; Alternating projections; Cauchy–Riemann complex; Closed range; Compactness; -Neumann problem; 32W05; 32A70;
D O I
10.1007/s12220-020-00532-w
中图分类号
学科分类号
摘要
The method of alternating projections is used to examine how regularity of operators associated to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann problem percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex. The approach revolves around operator identities—rather than estimates—that hold on any Lipschitz domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document}, not necessarily bounded or pseudoconvex. We show that a geometric rate of convergence in von Neumann’s alternating projection algorithm, applied to two basic projection operators, is equivalent to ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} having closed range. This implies that compactness of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann operator percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex whenever ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} has closed range at the corresponding form levels.
引用
收藏
页码:6922 / 6940
页数:18
相关论文
共 24 条
  • [21] Khidr S(undefined)-Neumann problem on nonpseudoconvex domains undefined undefined undefined-undefined
  • [22] Abdelkader O(undefined)-problem on weakly undefined undefined undefined-undefined
  • [23] Koenig KD(undefined)-convex domains undefined undefined undefined-undefined
  • [24] Shaw MC(undefined) estimates and existence theorems for the undefined undefined undefined-undefined