Percolation of Estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} by the Method of Alternating Projections

被引:0
作者
Kenneth D. Koenig
Jeffery D. McNeal
机构
[1] Ohio State University,Department of Mathematics
关键词
Percolation of estimates; Alternating projections; Cauchy–Riemann complex; Closed range; Compactness; -Neumann problem; 32W05; 32A70;
D O I
10.1007/s12220-020-00532-w
中图分类号
学科分类号
摘要
The method of alternating projections is used to examine how regularity of operators associated to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann problem percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex. The approach revolves around operator identities—rather than estimates—that hold on any Lipschitz domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document}, not necessarily bounded or pseudoconvex. We show that a geometric rate of convergence in von Neumann’s alternating projection algorithm, applied to two basic projection operators, is equivalent to ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} having closed range. This implies that compactness of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann operator percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex whenever ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} has closed range at the corresponding form levels.
引用
收藏
页码:6922 / 6940
页数:18
相关论文
共 24 条
  • [11] Laurent-Thiébaut C(2016)On the Complex Var. Elliptic Equ. 61 1073-73
  • [12] Shaw MC(1985)-Dolbeault cohomology of annuli Trans. Am. Math. Soc. 291 43-18
  • [13] Derridj M(1991)Régularité pour Math. Ann. 290 3-152
  • [14] Derridj M(1965) dans quelques domaines faiblement pseudoconvexes Acta Math. 113 89-1172
  • [15] Derridj M(2014)Estimations pour Complex Anal. Oper. Theory 8 1151-219
  • [16] Herbig A-K(2015) dans des domaines non pseudo-convexes Adv. Math. 282 128-267
  • [17] McNeal JD(1985)Inégalités a priori et estimation sous-elliptique pour Trans. Am. Math. Soc. 291 255-undefined
  • [18] Ho L-H(undefined) dans des ouverts nonpseudoconvexes undefined undefined undefined-undefined
  • [19] Ho L-H(undefined)On closed range for undefined undefined undefined-undefined
  • [20] Hörmander L(undefined)Subellipticity of the undefined undefined undefined-undefined