Percolation of Estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} by the Method of Alternating Projections

被引:0
作者
Kenneth D. Koenig
Jeffery D. McNeal
机构
[1] Ohio State University,Department of Mathematics
关键词
Percolation of estimates; Alternating projections; Cauchy–Riemann complex; Closed range; Compactness; -Neumann problem; 32W05; 32A70;
D O I
10.1007/s12220-020-00532-w
中图分类号
学科分类号
摘要
The method of alternating projections is used to examine how regularity of operators associated to the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann problem percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex. The approach revolves around operator identities—rather than estimates—that hold on any Lipschitz domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document}, not necessarily bounded or pseudoconvex. We show that a geometric rate of convergence in von Neumann’s alternating projection algorithm, applied to two basic projection operators, is equivalent to ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} having closed range. This implies that compactness of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-Neumann operator percolates up the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document}-complex whenever ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{\partial }}}$$\end{document} has closed range at the corresponding form levels.
引用
收藏
页码:6922 / 6940
页数:18
相关论文
共 24 条
  • [1] Ben Moussa B(2000)Analyticité semi-globale pour le Ann. Scuola Norm. Sup. Pisa 29 51-100
  • [2] Biard S(2019)-Neumann dans des domaines pseudoconvexes Trans. Am. Math. Soc. 371 2003-2020
  • [3] Straube EJ(2020)Estimates for the complex Green operator: symmetry, percolation, and interpolation J. Math. Anal. Appl. 489 124169-171
  • [4] Castillo AZ(1983) and weighted estimates for barred derivatives Ann. Math. 117 147-191
  • [5] Koenig KD(1987)Necessary conditions for subellipticity of the Ann. Math. 126 131-398
  • [6] Catlin D(2014)-Neumann problem J. Math. Anal. Appl. 409 393-857
  • [7] Catlin D(2018)Subelliptic estimates for the Indiana Univ. Math. J. 67 831-576
  • [8] Celik M(1978)-Neumann problem on pseudoconvex domains J. Differ. Geom. 13 559-254
  • [9] Sahutoglu S(1978)Compactness of the Ann. Inst. Fourier Grenoble 28 239-48
  • [10] Chakrabarti D(1980)-Neumann operator and commutators of the Bergman projection with continuous functions Math. Ann. 249 27-1089