On the Adjoint of Linear Relations in Hilbert Spaces

被引:0
作者
Adrian Sandovici
机构
[1] “Gheorghe Asachi”,Department of Mathematics and Informatics
[2] Technical University of Iaşi,undefined
来源
Mediterranean Journal of Mathematics | 2020年 / 17卷
关键词
Hilbert space; closed linear relation; Skew–adjoint linear relation; selfadjoint linear relation; normal linear relation; generalized orthogonal projection; 47A06; 47B25; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {H}}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {K}}$$\end{document} are two real or complex Hilbert spaces, A a linear relation from H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {H}}$$\end{document} to K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {K}}$$\end{document}, and B a linear relation from K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {K}}$$\end{document} to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {H}}$$\end{document}, respectively. Necessary and sufficient conditions for B to be equal to the adjoint of A are provided. Several consequences are also presented. More precisely, new characterizations for closed, skew–adjoint, selfadjoint, normal linear relations, and generalized orthogonal projections are obtained.
引用
收藏
相关论文
共 60 条
[1]  
Ammar A(2017)Frobenius-Schur factorization for multivalued Mediterr. J. Math. 14 29-23
[2]  
Jeribi A(1961) matrices linear operator Pac. J. Math. 11 9-214
[3]  
Saadaoui B(1978)Operational calculus of linear relations Math. Z. 159 203-105
[4]  
Arens R(2006)Positive selfadjoint extensions of positive symmetric subspaces Acta Math. Hung. 111 81-386
[5]  
Coddington EA(2007)Form sums of nonnegative selfadjoint operators J. Oper. Theory 58 351-3204
[6]  
de Snoo HSV(2007)A general factorization approach to the extension theory of nonnegative operators and relations Proc. Am. Math. Soc. 135 3193-72
[7]  
Hassi S(2015)Extremal extensions for the sum of nonnegative selfadjoint relations Ann. Univ. Sci. Bp. 58 55-308
[8]  
Sandovici A(2014)Factorization, majorization, and domination for linear relations Math. Model. Nat. Phenom. 9 295-131
[9]  
de Snoo HSV(1930)A kernel representation of Dirac structures for infinite-dimensional systems Math. Ann. 102 49-310
[10]  
Winkler H(1932)Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren Ann. Math. (2) 33 294-194