On quadratic hedging in continuous time

被引:0
作者
Huyên Pham
机构
[1] Laboratoire de Probabilités et Modèles Aléatoires,
[2] UMR 7599,undefined
[3] Université Paris 7,undefined
[4] 2 Place Jussieu,undefined
[5] 75251 Paris Cedex 05,undefined
[6] France (e-mail: pham@gauss.math.jussieu.fr),undefined
[7] CREST,undefined
[8] Laboratoire de Finance-Assurance,undefined
[9] 15 Blvd Gabrie'l Péri,undefined
[10] 92245 Malakoff Cedex.,undefined
来源
Mathematical Methods of Operations Research | 2000年 / 51卷
关键词
Key words: Incomplete market; quadratic hedging; optimization; semimartingales; stochastic integrals; Kunita-Watanabe projection; L2-projection; minimal martingale measure; variance-optimal martingale measure;
D O I
暂无
中图分类号
学科分类号
摘要
We review the main results in the theory of quadratic hedging in a general incomplete model of continuous trading with semimartingale price process. The objective is to hedge contingent claims by using portfolio strategies. We describe two types of criteria: the so-called (local) risk-minimization and the mean-variance approaches. From a mathematical viewpoint, these optimization problems lead to new variants of decomposition theorems in stochastic analysis.
引用
收藏
页码:315 / 339
页数:24
相关论文
empty
未找到相关数据