Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization

被引:0
|
作者
Jiang Huang
Min Wu
Fan Lu
Le Ou-Yang
Zexuan Zhu
机构
[1] College of Computer Science and Software Engineering,
[2] Shenzhen University,undefined
[3] Institute for Infocomm Research (I2R),undefined
[4] A*STAR,undefined
[5] Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security,undefined
[6] College of Electronics and Information Engineering,undefined
[7] Shenzhen University,undefined
[8] Shenzhen Institute of Artificial Intelligence and Robotics for Society,undefined
来源
关键词
Synthetic lethality; Graph regularization; Matrix factorization;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using short polypeptide clusters
    Yuehua Zhang
    Bo Li
    Pradip K Srimani
    Xuewen Chen
    Feng Luo
    Proteome Science, 10
  • [42] Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network
    Lai, Mincai
    Chen, Guangyao
    Yang, Haochen
    Yang, Jingkang
    Jiang, Zhihao
    Wu, Min
    Zheng, Jie
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1731 - 1734
  • [43] Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
    Jian-Yu Shi
    Kui-Tao Mao
    Hui Yu
    Siu-Ming Yiu
    Journal of Cheminformatics, 11
  • [44] Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis
    Mu, Jianwei
    Dai, Lingyun
    Liu, Jin-Xing
    Shang, Junliang
    Xu, Fangzhou
    Liu, Xiang
    Yuan, Shasha
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (04) : 1258 - 1271
  • [45] Detecting drug communities and predicting comprehensive drug-drug interactions via balance regularized semi-nonnegative matrix factorization
    Shi, Jian-Yu
    Mao, Kui-Tao
    Yu, Hui
    Yiu, Siu-Ming
    JOURNAL OF CHEMINFORMATICS, 2019, 11 (1)
  • [46] A multilineage screen identifies actionable synthetic lethal interactions in human cancers (vol 57, pg 154, 2025)
    Fong, Samson H.
    Kuenzi, Brent M.
    Mattson, Nicole M.
    Lee, John
    Sanchez, Kyle
    Bojorquez-Gomez, Ana
    Ford, Kyle
    Munson, Brenton P.
    Licon, Katherine
    Bergendahl, Sarah
    Shen, John Paul
    Kreisberg, Jason F.
    Mali, Prashant
    Hager, Jeffrey H.
    White, Michael A.
    Ideker, Trey
    NATURE GENETICS, 2025, 57 (02) : 480 - 480
  • [47] De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
    Ren, Shuangxia
    Tao, Yifeng
    Yu, Ke
    Xue, Yifan
    Schwartz, Russell
    Lu, Xinghua
    BIOCOMPUTING 2022, PSB 2022, 2022, : 278 - 289
  • [48] NNDSVD-GRMF: A Graph Dual Regularization Matrix Factorization Method Using Non-Negative Initialization for Predicting Drug-Target Interactions
    Zhang, Junjun
    Xie, Minzhu
    IEEE ACCESS, 2022, 10 : 91235 - 91244
  • [49] Predicting lincRNA-Disease Association in Heterogeneous Networks Using Co-regularized Non-negative Matrix Factorization
    Lin, Yong
    Ma, Xiaoke
    FRONTIERS IN GENETICS, 2021, 11
  • [50] Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    Gonen, Mehmet
    BIOINFORMATICS, 2012, 28 (18) : 2304 - 2310