Approximate subgroups with bounded VC-dimension

被引:0
作者
Gabriel Conant
Anand Pillay
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics
[2] University of Notre Dame,Department of Mathematics
来源
Mathematische Annalen | 2024年 / 388卷
关键词
11P70; 11B30; 03C45; 03C20;
D O I
暂无
中图分类号
学科分类号
摘要
We combine the fundamental results of Breuillard, Green, and Tao (Publ Math Inst Hautes Études Sci 116:115–221, 2012) on the structure of approximate groups, together with “tame” arithmetic regularity methods based on work of the authors and Terry (J Eur Math Soc (JEMS) 24(2):583–621, 2022), to give a structure theorem for finite subsets A of arbitrary groups G where A has “small tripling” and bounded VC-dimension: Roughly speaking, up to a small error, A will be a union of a bounded number of translates of a coset nilprogression of bounded rank and step (see Theorem 2.1). We also prove a stronger result in the setting of bounded exponent (see Theorem 2.2). Our results extend recent work of Martin-Pizarro, Palacín, and Wolf (Selecta Math (N.S.) 27(4):Paper No. 53, 19,2021) on finite stable sets of small tripling.
引用
收藏
页码:1001 / 1043
页数:42
相关论文
共 39 条
  • [1] Bogolioùboff N(1939)Sur quelques propriétés arithmétiques des presque-périodes Ann. Chaire Phys. Math. Kiev 4 185-205
  • [2] Breuillard E(2012)The structure of approximate groups Publ. Math. Inst. Hautes Études Sci. 116 115-221
  • [3] Green B(2020)On finite sets of small tripling or small alternation in arbitrary groups Combin. Probab. Comput. 29 807-829
  • [4] Tao T(2021)Quantitative structure of stable sets in arbitrary finite groups Proc. Am. Math. Soc. 149 4015-4028
  • [5] Conant G(2020)A group version of stable regularity Math. Proc. Camb. Philos. Soc. 168 405-413
  • [6] Conant G(2022)Structure and regularity for subsets of groups with finite VC-dimension J. Eur. Math. Soc. (JEMS) 24 583-621
  • [7] Conant G(2005)A Szemerédi-type regularity lemma in abelian groups, with applications Geom. Funct. Anal. 15 340-376
  • [8] Pillay A(2006)Sets with small sumset and rectification Bull. Lond. Math. Soc. 38 43-52
  • [9] Terry C(2012)Stable group theory and approximate subgroups J. Am. Math. Soc. 25 189-243
  • [10] Conant G(2008)Groups, measures, and the NIP J. Am. Math. Soc. 21 563-596