Multimodal-neuroimaging machine-learning analysis of motor disability in multiple sclerosis

被引:0
|
作者
Barbora Rehák Bučková
Jan Mareš
Antonín Škoch
Jakub Kopal
Jaroslav Tintěra
Robert Dineen
Kamila Řasová
Jaroslav Hlinka
机构
[1] The Czech Technical University in Prague,
[2] Institute of Computer Science of the Czech Academy of Sciences,undefined
[3] National Institute of Mental Health,undefined
[4] Institute for Clinical and Experimental Medicine,undefined
[5] University of Nottingham,undefined
[6] National Institute for Health Research,undefined
[7] Charles University,undefined
来源
Brain Imaging and Behavior | 2023年 / 17卷
关键词
Multiple sclerosis; Machine learning; Multimodal analysis; Prediction; MRI;
D O I
暂无
中图分类号
学科分类号
摘要
Motor disability is a dominant and restricting symptom in multiple sclerosis, yet its neuroimaging correlates are not fully understood. We apply statistical and machine learning techniques on multimodal neuroimaging data to discriminate between multiple sclerosis patients and healthy controls and to predict motor disability scores in the patients. We examine the data of sixty-four multiple sclerosis patients and sixty-five controls, who underwent the MRI examination and the evaluation of motor disability scales. The modalities used comprised regional fractional anisotropy, regional grey matter volumes, and functional connectivity. For analysis, we employ two approaches: high-dimensional support vector machines run on features selected by Fisher Score (aiming for maximal classification accuracy), and low-dimensional logistic regression on the principal components of data (aiming for increased interpretability). We apply analogous regression methods to predict symptom severity. While fractional anisotropy provides the classification accuracy of 96.1% and 89.9% with both approaches respectively, including other modalities did not bring further improvement. Concerning the prediction of motor impairment, the low-dimensional approach performed more reliably. The first grey matter volume component was significantly correlated (R = 0.28-0.46, p < 0.05) with most clinical scales. In summary, we identified the relationship between both white and grey matter changes and motor impairment in multiple sclerosis. Furthermore, we were able to achieve the highest classification accuracy based on quantitative MRI measures of tissue integrity between patients and controls yet reported, while also providing a low-dimensional classification approach with comparable results, paving the way to interpretable machine learning models of brain changes in multiple sclerosis.
引用
收藏
页码:18 / 34
页数:16
相关论文
共 50 条
  • [1] Multimodal-neuroimaging machine-learning analysis of motor disability in multiple sclerosis
    Buckova, Barbora Rehak
    Mares, Jan
    Skoch, Antonin
    Kopal, Jakub
    Tintera, Jaroslav
    Dineen, Robert
    Rasova, Kamila
    Hlinka, Jaroslav
    BRAIN IMAGING AND BEHAVIOR, 2023, 17 (01) : 18 - 34
  • [2] Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis
    Yperman, Jan
    Becker, Thijs
    Valkenborg, Dirk
    Popescu, Veronica
    Hellings, Niels
    Van Wijmeersch, Bart
    Peeters, Liesbet M.
    BMC NEUROLOGY, 2020, 20 (01)
  • [3] A systematic review of the application of machine-learning algorithms in multiple sclerosis
    Vazquez-Marrufo, M.
    Sarrias-Arrabal, E.
    Garcia-Torres, M.
    Martin-Clemente, R.
    Izquierdo, G.
    NEUROLOGIA, 2023, 38 (08): : 577 - 590
  • [4] MACHINE-LEARNING TECHNIQUES IN MULTIPLE SCLEROSIS PREDICTION USING EEG
    Soleimanidoust, Leila
    Rezai, Abdalhossein
    Barghamadi, Hamideh
    Ahanian, Iman
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,
  • [5] Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis
    Jan Yperman
    Thijs Becker
    Dirk Valkenborg
    Veronica Popescu
    Niels Hellings
    Bart Van Wijmeersch
    Liesbet M. Peeters
    BMC Neurology, 20
  • [6] Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis
    Denissen, Stijn
    Chen, Oliver Y.
    De Mey, Johan
    De Vos, Maarten
    Van Schependom, Jeroen
    Sima, Diana Maria
    Nagels, Guy
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12):
  • [7] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149
  • [8] Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis
    Bruin, Willem Benjamin
    Oltedal, Leif
    Bartsch, Hauke
    Abbott, Christopher
    Argyelan, Miklos
    Barbour, Tracy
    Camprodon, Joan
    Chowdhury, Samadrita
    Espinoza, Randall
    Mulders, Peter
    Narr, Katherine
    Oudega, Mardien
    Rhebergen, Didi
    ten Doesschate, Freek
    Tendolkar, Indira
    van Eijndhoven, Philip
    van Exel, Eric
    van Verseveld, Mike
    Wade, Benjamin
    van Waarde, Jeroen
    Zhutovsky, Paul
    Dols, Annemiek
    van Wingen, Guido
    PSYCHOLOGICAL MEDICINE, 2024, 54 (03) : 495 - 506
  • [9] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Magi Andorra
    Ana Freire
    Irati Zubizarreta
    Nicole Kerlero de Rosbo
    Steffan D. Bos
    Melanie Rinas
    Einar A. Høgestøl
    Sigrid A. de Rodez Benavent
    Tone Berge
    Synne Brune-Ingebretse
    Federico Ivaldi
    Maria Cellerino
    Matteo Pardini
    Gemma Vila
    Irene Pulido-Valdeolivas
    Elena H. Martinez-Lapiscina
    Sara Llufriu
    Albert Saiz
    Yolanda Blanco
    Eloy Martinez-Heras
    Elisabeth Solana
    Priscilla Bäcker-Koduah
    Janina Behrens
    Joseph Kuchling
    Susanna Asseyer
    Michael Scheel
    Claudia Chien
    Hanna Zimmermann
    Seyedamirhosein Motamedi
    Josef Kauer-Bonin
    Alex Brandt
    Julio Saez-Rodriguez
    Leonidas G. Alexopoulos
    Friedemann Paul
    Hanne F. Harbo
    Hengameh Shams
    Jorge Oksenberg
    Antonio Uccelli
    Ricardo Baeza-Yates
    Pablo Villoslada
    Journal of Neurology, 2024, 271 : 1133 - 1149
  • [10] Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis
    Montolio, Alberto
    Cegonino, Jose
    Garcia-Martin, Elena
    Perez Del Palomar, Amaya
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (05) : 507 - 528