Ornstein-Zernike theory for finite range Ising models above Tc

被引:0
作者
Massimo Campanino
Dmitry Ioffe
Y van Velenik
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] piazza di Porta S. Donato 5,undefined
[4] I-40126 Bologna,undefined
[5] Italy. e-mail: campanin@dm.unibo.it,undefined
[6] Faculty of Industrial Engineering,undefined
[7] Technion,undefined
[8] Haifa 3200,undefined
[9] Israel. e-mail: ieioffe@ie.technion.ac.il,undefined
[10] Laboratoire d'Analyse,undefined
[11] Topologie et Probabilités,undefined
[12] UMR-CNRS 6632,undefined
[13] CMI,undefined
[14] Université de Provence,undefined
[15] 39 rue Joliot Curie,undefined
[16] 13453 Marseille,undefined
[17] France. e-mail: velenik@cmi.univ-mrs.fr,undefined
来源
Probability Theory and Related Fields | 2003年 / 125卷
关键词
Phase Transition; Temperature Region; Exponential Decay; Inverse Correlation; Correlation Length;
D O I
暂无
中图分类号
学科分类号
摘要
 We derive a precise Ornstein-Zernike asymptotic formula for the decay of the two-point function 〈Σ0Σx〉β in the general context of finite range Ising type models on ℤd. The proof relies in an essential way on the a-priori knowledge of the strict exponential decay of the two-point function and, by the sharp characterization of phase transition due to Aizenman, Barsky and Fernández, goes through in the whole of the high temperature region β<βc. As a byproduct we obtain that for every β<βc, the inverse correlation length ξβ is an analytic and strictly convex function of direction.
引用
收藏
页码:305 / 349
页数:44
相关论文
empty
未找到相关数据