An Existence of an Isolated Solution to Nonlinear Two-Point Boundary Value Problem with Parameter

被引:0
作者
B. B. Minglibayeva
A. T. Assanova
机构
[1] Institute of Mathematics and Mathematical Modeling,
来源
Lobachevskii Journal of Mathematics | 2021年 / 42卷
关键词
ordinary differential equations; nonlinear two-point boundary value problem with parameter; isolated solution; parametrization method; solvability;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:587 / 597
页数:10
相关论文
共 24 条
[1]  
Akhmetov M. U.(2002)“The control of boundary value problems for quasilinear impulsive integro-differential equations,” Nonlin. Anal.: Theory Methods Appl. 48 271-286
[2]  
Zafer A.(2020)Numerical solution to a control problem for integro-differential equations Comput. Math. Math. Phys. 60 203-221
[3]  
Sejilova R. D.(2007)A parametrization method for solving nonlinear two-point boundary value problems Comput. Math. Math. Phys. 47 37-61
[4]  
Assanova A. T.(1989)Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation USSR Comput. Math. Math. Phys. 29 34-46
[5]  
Bakirova E. A.(1975)Difference methods for boundary-value problems in ordinary differential equations SIAM J. Numer. Anal. 12 791-802
[6]  
Kadirbayeva Z. M.(2008)Online parameter identification in time-dependent differential equations as a non-linear inverse problem Eur. J. Appl. Math. 19 479-506
[7]  
Dzhumabaev D. S.(2019)Problem of coupled electromagnetic TE-TE wave propagation in a layer filled with nonlinear medium with saturation Lobachevskii J. Math. 40 1673-1684
[8]  
Temesheva S.M.(2008)Projection method for the solution of integro-differential equations with restrictions and control Nonlin. Oscil. 11 219-228
[9]  
Dzhumabayev D. S.(2009)Construction of solution of integro-differential equations with restrictions and control by projection-iterative method Nonlin. Oscil. 12 85-93
[10]  
Keller H. B.(2014)Modified projection-iterative method for weakly nonlinear integro differential equations with parameters J. Math. Sci. 198 328-335