Lines on quartic surfaces

被引:0
作者
Alex Degtyarev
Ilia Itenberg
Ali Sinan Sertöz
机构
[1] Bilkent University,Department of Mathematics
[2] Université Pierre et Marie Curie,Institut de Mathématiques de Jussieu–Paris Rive Gauche
[3] Ecole Normale Supérieure,Département de Mathématiques et Applications
来源
Mathematische Annalen | 2017年 / 368卷
关键词
Primary 14J28; Secondary 14J27; 14N25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the maximal number of (real) lines in a (real) nonsingular spatial quartic surface is 64 (respectively, 56). We also give a complete projective classification of all quartics containing more than 52 lines: all such quartics are projectively rigid. Any value not exceeding 52 can appear as the number of lines of an appropriate quartic.
引用
收藏
页码:753 / 809
页数:56
相关论文
共 14 条
[1]  
Bogomolov F(2011)Constructing rational curves on K3 surfaces Duke Math. J. 157 535-550
[2]  
Hassett B(2000)Density of rational points on elliptic Asian J. Math. 4 351-368
[3]  
Tschinkel Y(1999) surfaces J. Algebraic Geom. 8 245-278
[4]  
Bogomolov FA(1908)Rational curves on Encykl. Math. Wiss. 3 1533-1779
[5]  
Tschinkel Y(2015) surfaces Math. Ann. 362 679-698
[6]  
Chen X(1974)Flächen vierter und höchere ordnung Am. J. Math. 96 602-639
[7]  
Meyer WF(1882)64 lines on smooth quartic surfaces Math. Ann. 20 254-296
[8]  
Rams S(2010)Projective models of Algebra Number Theory 4 335-356
[9]  
Schütt M(1996)- Nucl. Phys. B 471 503-512
[10]  
Saint-Donat B(undefined) surfaces undefined undefined undefined-undefined