Spacetime as a quantum circuit

被引:0
作者
A. Ramesh Chandra
Jan de Boer
Mario Flory
Michal P. Heller
Sergio Hörtner
Andrew Rolph
机构
[1] University of Amsterdam,Institute for Theoretical Physics
[2] Jagiellonian University,Institute of Physics
[3] Universidad Autonoma de Madrid,Instituto de Física Téorica IFT
[4] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),UAM/CSIC
来源
Journal of High Energy Physics | / 2021卷
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}, we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.
引用
收藏
相关论文
共 171 条
[1]  
Ryu S(2006)undefined Phys. Rev. Lett. 96 181602-undefined
[2]  
Takayanagi T(2016)undefined Fortsch. Phys. 64 49-undefined
[3]  
Susskind L(2014)undefined Annals Phys. 349 117-undefined
[4]  
Orus R(2012)undefined Phys. Rev. D 86 065007-undefined
[5]  
Swingle B(2008)undefined Phys. Rev. Lett. 101 110501-undefined
[6]  
Vidal G(2014)undefined Phys. Rev. D 90 126007-undefined
[7]  
Stanford D(2016)undefined Phys. Rev. Lett. 116 191301-undefined
[8]  
Susskind L(2016)undefined Phys. Rev. D 93 086006-undefined
[9]  
Brown AR(2017)undefined JHEP 03 119-undefined
[10]  
Roberts DA(2013)undefined Phys. Rev. Lett. 110 100402-undefined